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PREFACE

Preface

It was my hope, expressed in the prefaces of Volumes One
and Two, to complete this source book on Egyptian science in a
third volume, and, I now add, to do so by the end of the twentieth
century. However, it became apparent to me as I approached the
end of my treatment of mathematics, that the additional sections on
Egyptian medicine and biology as well as on ancient Egyptian rep-
resentations of nature promised for this volume would produce an
unwieldy tome. So I took seriously the declaration of Falstaff in
King Henry the Fourth Part I (Act V, Scene iv) that the “better
part of valor is discretion.” The result is that the full treatment of
mathematics will see the light somewhat earlier than I expected.
Needless to say, I do intend and hope to complete a final, fourth
volume.

The organization of the subjects of this volume follows the
pattern used in the preceding ones. Part I (Chapter Four—the
chapter numbers for the whole work are successive from Chapter
One in the first volume) is a long analytical and discursive section
on the nature and the procedures of Egyptian mathematics. It is di-
vided topically. Part II comprises a series of the six most important
mathematical works translated into English from their hieratic texts.
Part IIT includes a bibliography, an index of Egyptian words, and a
second index of proper names and subjects, while Part IV is a very
full collection of illustrations (145 pages). These will be useful to
anyone following the expositions in Chapter Four and in the intro-
ductions to and notes for the documents. Among the illustrations
are included copies of the hieratic texts and hieroglyphic transcrip-
tions of the documents for the convenience of a reader who wishes
to consult the original hieratic texts.

As in the earlier volumes, I have attempted here not only to
give a discourse on the nature and accomplishments of Egyptian
mathematics but also to inform the reader as to how our knowledge
of Egyptian mathematics has grown since the publication of the first
editions of the Rhind Mathematical Papyrus toward the end of the
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19th century. Thus I have liberally quoted and discussed through-
out the volume the interpretations of such authors as Eisenlohr,
Griffith, Hultsch, Peet, Struve, Neugebauer, Chace, Glanville, van
der Waerden, Bruins, Gillings, and others. I also consider some of
the studies of more recent authors such as those of Couchoud,
Caveing and Guillemot.

I must single out for specific praise Chace’s splendid edition
of the Rhind Mathematical Papyrus, which supersedes all prior
editions. Accordingly I thought it useful to copy Chace’s plates of
the text of that papyrus (see Figs. IV.2a-IV.2aaa below). Students
of the ppayrus over the last seventy years owe much to the Ameri-
can Mathematical Association for publishing Chace’s work I also
found beneficial for the completion of this volume the sections H, I,
J, and K of W. Kelly Simpson’s edition of Reisner Papyrus I, pre-
senting, as they do, account lists with calculations that reveal an
interesting contrast to the other documents, which appear to be
primarily handbooks of model problems. Therefore, I thank the
Museum of Fine Arts of Boston for permitting me to copy the
plates of those sections (see Figs. IV.18a-j).

As before, I acknowledge a special debt to Otto Neuge-
bauer for his help and encouragement, though he died just after the
completion of Volume One and thus well before I had completed
Volume Two and had given much thought to how to organize Vol-
ume Three and what to include in it. But, as will be seen by the
reader, Neugebauer’s keen works on Egyptian mathematics have
often been cited below. I also wish to say how useful R.J. Gillings’
trenchant treatment of Egyptian mathematics has been and how
much I have admired his efforts to reconstruct the fundamental
concepts and practices of that mathematics. Though he often ad-
mits the lack of direct textual evidence for some of his imaginative
interpretations, he usually keeps within the bounds of well-attested
Egyptian techniques and perceptions. The reader will discover,
however, that I do not always agree with Gillings’ conclusions.

It will be readily evident to any one who has studied the first
two volumes that I have made some changes in the computer pro-
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grams used in my preparation of camera-ready copy for Volume
Three. The chief change has been the substitution of Hans van den
Berg’s hieroglyphic program “Glyph for Windows” (prepared at the
Centre for Computer-aided Egyptological Research at Utrecht Uni-
versity) for my own way of creating glyphs with the now defunct
Fontrix program mentioned in the preface to Volume One. The
Dutch program has the great technical advantage of being a vector
system of hieroglyphic composition which retains the integrity of
the glyph regardless of the glyph’s size, while the simple bitmapping
system of Fontrix used in the prior volumes tends to reveal the
dotted-line composition of the glyphs when they are enlarged. The
new system has been designed to work with Word for Windows
and functions best with that word processor and its True Fonts.
Hence I have abandoned not only Fontrix but its correlative printing
program Printrix. However, I confess to missing the ease with
which new glyphs, or in fact any kind of new fonts, can be created
with Fontrix.

Once more I must thank my secretary Ann Tobias, who re-
tired as the indexes of this volume were being completed. Indeed
she continued until the very day of retirement to render all of the
same kinds of expert aid which I have so gratefully lauded in the
prefaces of the earlier volumes. The final proofreading was taken
up ably by her successor Judy Wilson-Smith.

Finally I must thank the American Philosophical Society for
its long support of my work, and within that organization I owe a
special debt, first to Herman Goldstine, its recently retired Execu-
tive Officer, to whom I have dedicated this volume; then to Carole
LeFaivre-Rochester, the Society’s Editor, who has so consistently
and imaginatively helped in the publication of these volumes on an-
cient Egyptian science; and lastly to Susan Babbitt, the skillful
copy-editor of this and the preceding volume.

Marshall Clagett

Professor Emeritus

Institute for Advanced Study
Princeton, N.J.
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EGYPTIAN MATHEMATICS

CHAPTER FOUR

Ancient Egyptian Mathematics
Quantification in the Early Dynastic Period and the Old Kingdom

Before describing the specific features of the mathematics of
the ancient Egyptians, I wish to stress the overall aspects of quanti-
fication which developed in the early Pharaonic period. The most
primitive uses of mathematics resided in counting, say the invento-
ries of possessions, products, prisoners, or the like, of which there
are examples discovered in the earliest tombs at the very beginning
of or shortly before dynastic times, and I have discussed these ex-
amples in Volume One of this work. Small and mid-scale meas-
urements of length and ultimately of land areas and volumes of solid
materials were developed out of the lengths or widths of parts of
the body, such as cubit arm lengths, widths of palms, hand spans,
and fingers. Liquid and dry grain measures came from the use of
common vessels, as cups and jugs for grain and beer, and silos and
sacks for larger amounts of grain. The counting of paces or crudely
timed boat movements could have lead to the development of the
linear measuring of longer distances. The counting of repetitious
natural phenomena like the darkness of night and the light of day
(and their variations in lengths), lunar, solar, and celestial risings,
culminations, and settings led to the establishment of the conven-
tional measures of time like months, years, days, and hours, as I
have shown in considerable detail in Volume Two. The counting of
the successive years during which kings ruled led to a convenient
measure of long term time periods, which has also been pointed out
in connection with my presentation of the annals written on stone
that characterize the successive reigns of the pharaohs from the
beginnings of the united Egyptian kingdom in about 3000 B.C. All
of these efforts to measure were facilitated by practical inventions.

The refinement of linear measurement in surveying and
building led to the invention of scaled rules (i.e., cubit-rods or

1
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double cubit-rods) for shorter measures and rope lengths for longer
measures to serve builders and land surveyors.! Indeed, it is prob-
able, as Herodotus pointed out in a rather fanciful and anachronistic
account of the activity of the Middle-Kingdom pharaoh Sesostris,
that at least a stimulus to the development of land measurement
(practical geometry) among the Egyptians was the need to measure
the land (or, remeasure the land after its flooding by the Nile):?

It was this king (i.e., Sesostris), moreover, who divided the
land into lots and gave everyone a square piece of equal
size, from the produce of which he exacted an annual tax.
Any man whose holding was damaged by the encroachment
of the river would go and declare his loss before the king,
who would send inspectors to measure the extent of the
loss, in order that he might pay in future a fair proportion of
the tax at which his property had been assessed. Perhaps
this was the way in which geometry (i.e., land measurement)
was invented, and passed afterwards into Greece....

In the preceding volumes I have noted some of the uses of
mathematics by the ancient Egyptians. For example, we saw in
Volume One that the Egyptians used a different glyph for each
separate power of ten when counting items in the hieroglyphic form
of writing: ' =1, "=10,2=100, 1=1000, 3=10,000, X =100,000,
and a"=l,000,000 (see Fig. 1.10 in Volume One and also the glyphs
in the leftmost column in each of the tables of Figs. IV.1a and
IV.1b below; various forms of their hieratic counterparts are found
in the other columns of these same figures). Not only do these
numbers appear in tomb inscriptions from the earliest dynasties, but
even on the very early mace-head of the probably predynastic King
Narmer, where, as I noted in Vol. 1, p. 6 (see Fig. 1.9), “in the low-
est register are recorded 400,000 oxen, 1,422,000 goats, and
120,000 prisoners, no doubt the fruit of Narmer’s victory” over the
northern Egyptians.

These hieroglyphic numbers were also plentiful in the Early
Egyptian Annals on Stone, which are customarily called the Pal-

2
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ermo Stone from one of the main fragments of that document
(Document 1.1). From perusing that document we find first of all
how crucial counting was in the administration of the kingdom for
the biennial survey of the wealth of the kingdom, specified as the
“counting” (tnwr), and how that system of counting the wealth de-
veloped into a system of dating by regnal years; see Vol. 1, pp. 50-
53. We also see from the very beginning of that document, in the
reign of Aha in the first dynasty, that the years, the days, and the
months have been numbered: “Year [X +7 (?)] [The last civil year
of the reign of the King, of which he reigned the first] six months
and seven days” (Vol. I, p. 68).

In the Annals, in the section devoted to the reign of the sec-
ond monarch (Djer ?), we note for the first time the practice of re-
cording, for each year, the greatest height reached in the annual
rising of the Nile: “[Nile Height]: 6 cubits, 1 palm” (ibid,, p. 69).
In a later reigns we find heights as finely measured as “4 cubits, 2
palms, 2 2/3 fingers” and “2 cub., 3 pal., 2 3/4 fing.” (ibid., pp. 80-
81). Indeed, this is the earliest source I know for the use of frac-
tional measures, the fractions being the palm (=1/7 of a cubit) and
the finger (=1/4 of a palm and thus =1/28 of a cubit) and even fur-
ther fractions of these fractional parts, where we find special signs
for 1/2, 2/3, and 3/4; see Fig. IV.0. But it was only somewhat later
that we find the whole spectrum of numerically expressed fractions
as unit parts: 1/2, 1/3, 1/4..... For early representations of the unit
fractions in both hieroglyphics and hieratic writing, see Fig, IV.1c,
Table CC. Only 2/3 and 3/4 appeared with numerators greater than
one, as we might say today. (We shall have a great deal to say later
about the skill of the ancient Egyptian mathematicians in manipulat-
ing with these unit fractions.) I discussed the Nile measurements at
some length in the first volume (ibid., pp. 109-113). In the second
volume (see the Index under “Nile risings™) I stressed the possible
significance of Nile risings for the establishment of a seasonal cal-
endar of 365 days, which developed into the well-known Egyptian
Civil Year that was used without refinement during the whole Phar-
aonic period up to the accession of the Ptolemaic kings in Egypt.

Another important use of numbers in the Early Annals on
Stone was to describe the quantity of land involved in various gifts

3
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to the temples. In describing this usage, I have already noted that a
kind of primitive decimal place-value system was sometimes used
(see Volume One, pp. 56-57):

The gifts of land mentioned in the Annals also yield pre-
cious information to the historian of Egyptian numeration
and measurement, The measures of land in these grants in-
volve /13 (a 10-aroura measure), st3t (unit-aroura measure),
rmn (1/2 aroura), hsb (1/4 aroura), s3 (1/8 aroura), mh (a
cubit-area, i.e., 1/100 aroura). If we start with a “cubit-
area” [or 13, so called from its meaning as “land-strip”,] (i.e.,
an area 1 cubit wide and 100 cubits long), then 1/8 aroura =
12 1/2 cubit-areas, 1/4 aroura = 25 cubit-areas, 1/2 aroura =
50 cubit-areas, 1 aroura = 100 cubit-areas, and 10 arouras =
1000 cubit-areas (which reveals why... [L] read as A3,
meaning 1000, was used for the 10-aroura measure; see Fig.
.50 [in Volume One and the Griffith and Gardiner citations
in note 14 below commenting on the different interpreta-
tions of some of these measures by Helck]).

In expressing the various areas of land grants, the
annalist has sometimes made use of a primitive place-value
system... In this system we find numbers where the 10-
aroura measures are numbered first in units without an ex-
pected preceding 10-aroura sign, then followed by an ...
aroura sign which is itself followed by the counting of those
unit-arouras in units, We also find numbers where 100-
aroura measures are counted in units without any preceding
100-unit sign, then followed by the 10-aroura sign which is
itself followed by the counting of 10-aroura measures in
units. But the annalist was not always consistent in the use
of the place-value technique...and in fact the use of the
technique in later times was rare.

There is no reason to believe that this primitive system was
of any special use in simplifying calculations involving addition,
subtraction, and multiplication, as was the case later when Indo-

4
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Arabic numerals with their carefully delineated decimal columns
came into use. Hence without any special calculating benefit evi-
dent in the early Egyptian system, there was no particular stimulus
to develop it further when the abbreviated hieratic writing of nu-
merals became widespread in the Middle Kingdom, and the early
place value system remained an historical oddity of the hieroglyphic
writing of numerals.

It should also be noted that the Early Annals on Stone con-
tained several references to surveying activity for the laying out of
the ground plan or “stretching the cord” as the first step in the
construction of temples or mansions (see Vol. 1, p. 50 for refer-
ences to stretching the cord in the reigns of King Den in the first
dynasty, King Ninetjer in the second, and King Djoser in the third;
for further discussion of stretching the cord, see ibid., pp. 124-26).
Incidentally, Fig. IV.23 illustrates a pair of farm hands carrying a
cord to be used for measuring a field. We have also seen in Vol-
ume I (pp. 145-46) that land transfers were mentioned in the tomb
of Metjen, the administrative head of the Provision-Bureau at the
end of the third dynasty and the beginning of the fourth. These
imply, as I said there, “that full play was given to measurement, and
particularly to land measurement.”

These examples we have given of the use of numbers and
some measures in the early periods do not of course tell us much
about the date of the origin of the procedures of Egyptian mathe-
matics, but they allow us not to be so pessimistic about the prob-
ability that a good many arithmetic and geometrical rules were in
place from the beginning of the dynastic period. Even so, we can
understand the somewhat negative assessment by Eric Peet of our
lack of knowledge of the origin of Egyptian mathematical tech-
niques:

Our information on this point is sadly defective. The
Rhind Papyrus [our Document IV.1] dates from the Hyksos
Period, though it claims to be a copy of a document pre-
pared in the XIIth Dynasty, in the reign of Amenemhet ITI.
This may well be, since both the Moscow Papyrus [our
Document IV.2] and the Kahun fragments [our Document

5
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IV.3] date from that Dynasty. But how much earlier must
we go to find the beginnings? Surely the complicated fabric
of Egyptian mathematics can hardly have been built up in a
century or even two, and it is tempting to suppose that the
main discoveries of mathematics should be dated to the Old
Kingdom. There is a very definite tendency among Egyp-
tologists to put this period down as the Golden Age of
Egyptian knowledge and wisdom. There can be little doubt
that some of the literary papyri have their roots in this era,
as for example the Proverbs of Ptahhotep, and the anti-
quated constructions of the medical papyri make it possible
that the science of medicine, such as it was, had its spring in
the Old Kingdom.

Of definite evidence for this early date there is none.
All we know is that by the beginning of the First Dynasty
the system of notation was complete up to the sign for
1,000,000.... In the [end of the 1lIrd and beginning of the]
IVth Dynasty we find in the tomb of Methen [Metjen] that
the land measures of the Rhind Papyrus are already in full
development in a form which involves correct determination
of the area of the rectangle, but not of necessity of the tri-
angle or circle. There appears to be no early evidence with
regard to measures of capacity, though one may almost take
it for granted that with the measurement of the field on
which the corn was grown went that of the containers in
which it was stored and sold. That measurement by weigh-
ing was practised can hardly be denied in view of various
objects of Old Kingdom date which can scarcely be anything
but weights, as for example the stone weight of Khufu, for-
merly in the Hilton Price collection, though the attempts to
establish a standard from these objects have been far from
satisfactory.

From these feeble indications we pass straight to the
fully developed mathematical system of the XIith Dynasty,
the early stages in the building up of which are entirely con-
cealed from us.
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Peet’s assumption about Egyptian knowledge of the area of
a rectangle in early times is surely correct in view of use of the
measures of cubit-areas and arouras and their multiples and frac-
tions in both Document I.1 and LII in Volume One; see, e.g., Fig.
1.50. But he is also correct in noting lack of evidence of mathe-
matical tracts (with sample problems and tables) until the Middle
Kingdom. And so we shall discuss shortly the cautious steps taken
from the practical measurements mentioned above toward some
simple general conceptions of numerical relationships or formulas
to serve as models for budding calculators and even toward the
concept of proof or at least of the testing of the accuracy of a calcu-
lation. But before we do this, we should discuss the various meas-
ures employed by the early Egyptians, which for the most part are
found in the mathematical documents that follow this chapter.

Egyptian Measures*

At this point I refer the reader to the lists of ancient Egyp-
tian measures embraced in Figs. IV.Ic, IV.1g, IV.1h, IV.1j, and
single out here the principal ones that figure in the mathematical
documents below. As indicated above, the most common of linear
measures was the royal cubit (meh nesut or, probably in more exact
transcription of consonants alone, 24 a/-swy). It was approximately
20.6 inches (i.e., 52.3 cm.),® dividable, as has been mentioned
above, into 7 palms or 28 fingerbreadths (also commonly called
“fingers” or “digits”). The cubit was used for smaller lengths, while
the khet (or more fully ht-n-nwhk), a measure of 100 cubits, was
used for field measurements, and the ater (or itr), the “river meas-
ure,” equal to 20,000 cubits (i.e., about 10.5 kin.) was the longest
measure used for larger fields and for itinerary purposes (e.g., see
my Vol. One, pp. 492-94, 507 n. 1) and thus was similar to the
Greek schoenus. The Egyptian cubit-rod was first investigated in
detail by Lepsius (see note 4) and I have given his reproductions of
various wood, stone, slate, basalt, bronze, and talc cubit- or ell-rods
as my Figs. IV.24 (Tafeln 1-5). He also gave us in tabular form the
significant facts concerning the division of these rods and I have

)
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slightly emended the transliterations; my additions are given in
brackets:*®

+ 2.~ meh nisut fmh ni-swe] “toyal cubit” = 7 palms
= 28 digits.
— 3 meh nedjes fi.e., mh nds] “short cubit” = 6 palms
=24 digits.
~*remen [i.e., rmn] “upper arm” =5 palms = 20 digits.
Y djeser [i.e., dsr] [“the bent arm”] = 4 palms = 16 digits.
L= ptor pd or shat] aa fi.e. 83t 3] “great span”
=3 1/2 palms = 14 digits.
L pt [ or pd ot shat] nedjes [i.e.,$3t nds] “small span”
=3 palms = 12 digits.

— [with back of hands bent down] =2 palms =8 digits.

© [fist, 7] = 1 1/2 palms = 6 digits.
= “handsbreadth” =1 1/4 palms = 5 digits.
2,5, [shejsep [i.e., $sp) =1 palm = 4 digits.

{1, 7 djba, digit (subdivided to 1/2, 13, etc. to 1/16) [and
- to be distinguished from the finger used as 10,000]

=1/4pam =1 digit.
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Also of interest is Susan K. Doll’s description of the cubit-
rod of the Chief of Treasury Maya of Dynasty 18.” It is at the Lou-
vre Museum, N. 1538 (see Fig. IV.25), and it is the cubit-rod more
clearly reproduced in the drawing by Lepsius in my Fig. IV.24
(Tafel 2) (a):

Length 52.3 cm., width3.2 cm....

The wooden rod measuring the length of the royal Egyptian
cubit is painted black and has white markings. The rod is
rectangular in section, with a beveled edge between the top
surface and the marked side.

The royal Egyptian cubit was seven palms long, each palm
being divided into four digits or fingers, and each digit fur-
ther subdivided. These subdivisions up to a sixteenth of a
digit are marked by strokes on one of the vertical sides. On
the beveled edge are two registers, one showing the subdi-
vision of the digit written out as fractions, and the second
containing markings for other kinds of internal cubit divi-
sions, such as that for the short cubit (six palms), the great
and little shat, and various other measurements based on the
hand. Along the flat top surface are the names of the gods
who preside over each digit. On the bottom of the rod and
on its back are three columns of dedicatory inscriptions.

She also mentions the existence of another cubit-rod belong-
ing to Maya, which is now in Turin. This is the cubit-rod repro-
duced by Lepsius and given in my Fig. IV.24 (Tafel 1) (b). The fact
has often been noted that the remen, listed in Lepsius’ table as the
initial division of the cubit after the long and the short cubits and as
being equal to 5 palms, is approximately equal to half the diagonal
of the square with a side of one cubit (i.e., 7 palms).® From this
empirical fact, there have been exaggerated claims that the Egyp-
tians had knowledge of the Pythagorean theorem, which is, of
course, a formal Euclidean theorem of the Elements (Prop. 1.44),
expressed as part of a logical structure with definitions, postulates,
and axioms never realized or specified by the Egyptian geometers.
But in fact the inclusion of the remen, like the inclusions of the

9
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other linear measures, was a measuring convenience that allowed
for the laying out of square areas and their fractions.

In his comments on Lepsius’ analysis of cubit-rods, Griffith
notes that the evidence derived from that analysis about the cubit
and its division must be received with caution, “for they are often
very carelessly inscribed.”

As a further observation on the cubit-rods, I call attention to
the remark of Ms. Doll’s that the Parisian rod contained the names
of the gods presiding over each digit. This is just another indication
of the religious connections with science in our account in these
volumes. Indeed we should point out the fact that in addition to the
cubit-rods (mainly of wood) by which the actual practical measures
were made, there is a class of ceremonial cubit-rods usually of stone
and often kept in temples and the tombs of high officials. Hayes
describes two such rods in the collection of the Metropolitan Mu-
seum in New York (see Fig. IV.26):"

Among the units of measure with which the Egyptian scribe
was required to be familiar one of the most important was
the royal cubit of seven palms (20 9/16 inches).... Our own
knowledge of this standard unit of measure [in the Metro-
politan] stems not from the relatively simple wooden cubit
rods actually used to record and lay out measurements, but
from the elaborately inscribed ceremonial cubit rods of
stone, some of which seem to have been kept in the temples
of the gods while others were buried in the tombs of royal
architects and other prominent officials of the New King-
dom. Two such cubit rods, carved, respectively, of chert
and green slate, are each represented in our collection by a
single fragment (see fig. 263 [Author: my Fig. IV.26]) com-
prising less than one-sixth of the original rod but sufficing to
show the character of the monument and the nature of its
texts. Both rods belonged to a type which carried, in addi-
tion to all the duly labeled divisions and subdivisions of the
cubit, “such a bewildering amount of assorted information
that ‘almanac’ seems a better word than ‘cubit rod’ by
which to describe them.”!! The fragment illustrated, for
10
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example, preserves on the front edge of the rod the first and
second “digits” of the cubit subdivided, respectively, into
two halves and three thirds, on the bevel the names of the
corresponding nomes of Upper Egypt (Elephantine and
Edfu), and on the top of the rod the names of the deities as-
sociated with the individual digits (in this case Re® and Shu).
On the bottom of the rod the first line of text starts off with
the words “The hour according to the cubit: a jar (?) of
copper filled with water....” which have been thought to re-
fer to a water clock and the manner of reading it. The sec-
ond line, the mid-section of which probably contained the
names and title of a king, begins: “This is a communication
for those who shall be introduced [into Mendes)....” The
third line would seem to have given the relative heights of
the annual inundation at different places along the Nile Val-
ley. On the back of the rod the list of nomes is resumed
with the names of the Seventh and Eighth Nomes of Lower
Egypt (Metelis and Pithom). The little text on the end of
the rod tells us that “The cubit is life, property, and health,
the repeller of the rebel, the...going forth of Chnum [or
Khnum], who is Es[neh] (?).” The piece is of unknown
provenience.... The [second rod, i.e., the] fragment of the
slate rod...comprises the third to seventh digits of the cubit
and bears additional portions of the texts already referred
to, including, in the first line on the bottom, “measurements
in cubits and palms according to the months of the year,”
“possibly a table by which readings of a sun-dial [or, better,
a shadow clock?] might be interpreted.”'2

Similar ceremonial or votive cubit-rods, or “Weihellen,” as

Ludwig Borchardt calls them, from the Cairo and Berlin Museums
were noted to contain some information and tables that might also
pertain to water- and shadow-clocks. They were long since dis-
cussed (but without claiming certainty) by that great student of time
measurement and are shown in my Fig. IV.27a,"* and it is evident
that his discussion of the possible uses of the sacred cubit-rods in
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determining the hours influenced the more recent discussion of the
use of such rods as hour clocks.

When we proceed from linear measures to those of areas,
we remind the reader of what we have said about land measure-
ments present in the documents of the Old Kingdom, like the in-
scriptions in the tomb of Metjen and in the Annals on Stone. The
area measurements from the Old Kingdom have been summarized
by Helck [with the author’s bracketed comments):'*

100 square cubits = 1 £ = 10 x 10 cubits = 27.565 sq. m.
1000 sq. cubits = 1 43 = 10 x 100 cubits =275.65 sq. m. [see
note 14 for value of the 3 as 10 arouras].

10000 sq. cub. = 1 sg3¢ [or | “arours,” a Greek term often
used to translate s¢3r] =100 x 100 cub. = 2765.5 sq. m.

The following fractional divisions of the ¢3 are found in the
Old King.: 1 rmn = 1/2 3,1 hsb = 1/2 rmn; 1 23 = 1/2 hsb.
[See note 14 for fractions of the st3t found in the Annals on
Stone instead of those of the 13 given in Helck’s table.]

Examples of these area measures as used in the Middle
Kingdom, and slightly later, can be found in Problems 48-55 in
Document IV.1 and Problems 4, 6-7, 11, and 18 in Document IV.2
below. I shall discuss the geometrical formulas involved in these
problems later when I discuss the character of Egyptian geometry,
but it will be useful to note the following conclusions of A.B. Chace
regardmg the area problems of Document IV.1, with additions of
my own in brackets:'*

The only problems dealing with area are 48-55. The units
of measure in these problems beside the cubit...are, first, the
linear unit called khet which is 100 royal cubits, and, sec-
ond, the square khet called setat [i.e., setjat, see the table
given above), which is 10,000 square cubits. The area of a
field is expressed in terms of the setat and fractions of a se-
fat in much the same way as the measure of a quantity of
grain is expressed in terms of the hekat [which in this vol-

12
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ume I have transcribed as hegat] and fractions of a hekat
[see note 13 above and my discussion of volumetric meas-
ures in the paragraphs below]. In the first place, the Egyp-
tians used the fractions 1/2, 1/4, and 1/8 of a sefat in the
same way as they used the “Horus eye” fractions [of a
hekat), and for these fractions also they had special forms
[differing from those of the Horus eye fractions, but which
like them are expressed here in bold type]. Then smaller
portions of a sefat were expressed in terms of a unit that
they called “cubit” [or “cubit-of-land”] and seemed to have
thought of as a strip 1 khet or 100 cubits long and 1 cubit
wide. I shall call this unit a “cubit-strip” [and this name is
adopted also in this volume]. 100 cubit-strips make a setat,
and as 1/8 of a setat is equal to 12 1/2 cubit-strips, calcula-
tions with this system of units are not quite as simple as
with the hekat system, where the smallest “Horus eye” frac-
tion is equal to a whole number of ro [see the next para-
graphs below]. Thus in Problem 54 we have 1/5 of a setat,
which is 20 cubit-strips, expressed as 1/8 sefat 7 1/2 cubit-
strips. The double of this is 1/4 1/8 setat 2 1/2 cubit-strips,
and so on....

Going on to volumetric measures, we can note two systems,
often intertwined in problems related to the size of the containing
space in cubic~cubits and the amount of the contained grain or lig-
uid in hen or hegat and sometimes independently as in the case of
the volume of an architectural building or element, like a chapel,
where the cubic~cubit and its fractions appear by themselves. The
mixed system is found, e.g., in the granary problems (41-46) in
Document IV.1. The system using cubic-cubits and their fractions
alone is found in Document IV.6, where the volume of space
cleared of rubble is used to determine the number of man-days of
workers. In discussing that document below, I have noted that the
ultimate volume produced by the product of linear cubit measures is
understood to be in cubic-cubits. Furthermore, the fractions of
those cubic-cubits are expressed often by the linear names of
“palms” and “fingers.” In such cases those terms stand for 1/7th and

13
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1/28th of a cubic-cubit. In the system involving heqat, we note that
in the Middle Kingdom the largest measure was the “sack” or
“khar” (h3r) = 20 “heqat” (hk31), [i.e., 5 4-heqat] = 2/3 of a cubic-
cubit (see Doc. IV.1, Problems 41-46). The heqat in turn = 10 hin
(hnw), (ibid., Problem 80). The hin = about .48 liter.'® Hence, in
the Middle Kingdom at least, the heqat = about 4.8 lit. and thus the
sack = about 96 lit. With his eye on the Rhind Papyrus, i.e., our
Document IV.1, its editor, A.B. Chace makes the following obser-
vations on measures of capacity, with my additions in brackets:"’

The unit of volume or capacity, used especially in
measuring grain, was the hekat [commonly transcribed in
my volumes as hegat], which can be determined as 292.24
cubic inches, or a little more than half a peck. This was di-
vided into 320 parts called ro [or re, =, with the number of
parts, i.e., the denominator of the fraction, indicated in
regular numerical glyphs by strokes below the “part” glyph],
but the Egyptians also used as fractions of a hekat the frac-
tions whose denominators are powers of 2 down to 1/64,
1/64 of a hekat being 5 ro. This series of fractions was pe-
culiarly adapted to multiplication by doubling or halving,
They were written in a special notation and have been called
“Horus eye” fractions....[see note 13 above and its refer-
ences to Horus eye fractions).

Beside using the “Horus eye” notation for parts of a
hekat, the Egyptians had special hieratic signs for the num-
bers from 5 to 10 when used to express hekat. These signs
seem to be ligatures of dots, the sign for 10 being a long
vertical stroke, representing perhaps ten dots [or little cir-
cles] one above another [and they had a peculiar sign used
alone and with other signs for different kinds of grain and
with expressions for a large quantity of grain, the basic sign
P being a corn-measure lying on its side with grains pour-
ing out of it].... When the amount was equal to or more
than 100 hekat, this sign was written with the number of
hundreds before it, and the signs for any smaller number of

14
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hekat next after it. Also SO hekat and 25 hekat were put
down as 1/2 and 1/4. The number of whole hekat was fol-
lowed by “Horus eye” fractions and by 7o and fractions of a
ro [for example, see Problems 47, 68-70 in Document
IV.1] In the case of 2, 3, or 4 ro the sign = for the word
ro was written under the number, while this sign without a
number stood for 1 7o, and the fractions of a ro came after
the sign.

Furthermore the Egyptians had not only the system
of a simple hekat and its parts and multiples, but also sys-
tems of a double hekat and a quadruple hekar with their
parts and multiples, each part or multiple of a double hekat
being twice the corresponding part or multiple of a simple
hekat, and each part or multiple of a quadruple hekat
[being] four times the corresponding part or multiple of a
simple hekat. ...

Though the word hen or hin is used for the measure of lig-
uids generally and of grain as well, there are specific words used for
each liquid, but I notecgere only the common word for a measure of
beer, namely “jug” (— 79, ds; e.g., see Document IV.1, Problem 71
and Document IV.2, Problem 9, Col. XVII, line 3). Other specific
measures will be noted and discussed in the documents below and
have been conveniently listed by Helck.™

Systematic Mathematical Treatises and Tabular Aids

I have given some examples of the early uses of quantifica-
tion in the form of counting and land measure in the first section of
this chapter and listed the standard Egyptian measures in the sec-
ond. It will be evident from the rest of the chapter that the domi-
nant aspect of ancient Egyptian mathematics continued long after
the first period to be the usage of practical techniques governed by
the need to measure and to count. But by the time of the Middle
Kingdom, numerous tracts were written in hieratic on papyrus (or
in one case leather) with model problems that served to instruct the
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accountant, surveyor, tax assessor, builder, baker, brewer, and
other computists, making their tasks simpler. Also numerous tables
were composed to speed up the necessary routines of calculation,
It will be evident that the six documents that I have included at the
end of this chapter allow us to delineate clearly the principal charac-
teristics of ancient Egyptian mathematics and its aids. Though we
do not have enough sure data to date all of the documents pre-
cisely, even those whose extant copies were made later than the
Middle Kingdom seemed to depend on Middle Kingdom sources
whether for the whole tract, as is certain of Document IV.1, or for
the forms or techniques of solution of particular problems, as is
probably the case of Documents IV.2-IV.5. Finally, Document
IV.6 is essentially an accounting document involving actual volu-
metric determinations according to simple formulas rather than a
collection of model problems. Hence more approximations and
difficult fractional multiplications are present. Before considering
the essential features of Egyptian mathematics, I should like to list
the six documents, briefly identifying them and giving their probable
dates.

1. Document IV.1: the Rhind Mathematical Papyrus, writ-
ten down in the 33rd year of the Hyksos King Apophis (ca. 1585-
1542 B.C.); but, as we are told by the scribe, it was copied from an
earlier version written during the reign of the 12th dynasty King
Amenemhet I (ca. 1844-1797 B.C.). We owe this early date to
the introductory paragraph of the tract, as the reader can readily
see. As I shall show at some length in this chapter, and in the
translation of the document, it is not only the longest mathematical
document, but it has the most varied content and tells us more
about Egyptian mathematics as a whole than any other document.
The first section contains the so-called “Table of Two,” which, in
modern terms, we could regard as a table for reducing fractions
with numerator 2 and denominators the odd numbers from 3 to 101
to sums of unit fractions, i.e., fractions with numerator 1, but which
is more accurately presented in Egyptian terms as a series of divi-
sions of 2 by the odd numbers from 3 to 101 such that the quotients
are the sums of fractions each of which has the numerator 1. This
document also includes a great many different kinds of problems
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(see my list in the introduction to the document). The problems il-
lustrate amply the Egyptian techniques of doubling, halving, taking
2/3, multiplying by 10, multiplying fractions by each other, finding
unknowns, computing the areas and volumes of figures, calculating
the slopes of triangles, and so on, as we shall demonstrate shortly.

2. Document 1V.2: the Moscow Mathematical Papyrus.
This copy appears to have been written down in the 13th dynasty
(from about 1783 B.C. to after 1640 B.C.). But its editor believed
it to be dependent on a work of the 12th dynasty (see the introduc-
tion to Document 1V.2, n. 4), perhaps dating from about the same
time as the earlier copy from which the Rhind Papyrus was copied.
It contains examples (chaotically arranged) of many of the same
types of problems as the Rhind Papyrus. Its chief interest lies in its
geometrical problems, such as its correct solution of the volume of
the frustum of a square pyramid (Problem 14) and one that may
give the surface area of a hemisphere (though this is much disputed,
as I note below). It also contains a number of beer and grain prob-
lems which are difficult to understand, as the notes to the transla-
tion of the document reveal;, but they are not very crucial for our
knowledge of Egyptian mathematics.

3. Document IV.3: the Kahun Mathematical Papyrus, which
is believed to have been composed in the second haif of the 12th
dynasty. There is nothing very original in the fragments making up
this document. It contains a fragment of the Table of Two, and an
interesting problem involving numbers in arithmetic progression.
For further comments on its contents, see the introduction to the
document below.

4. Document 1V .4: the Berlin Papyrus 6619. The fragments
contained in this document date from about the same period as the
two preceding documents, namely some time from the second half
of the 12th dynasty through the |3th, as I remark in my introduc-
tion to the document, The document consists of two arithmetic
problems which are similar to finding by false position two un-
knowns when given two simultaneous equations.

S. Document IV.S: the Mathematical Leather Roll of the
British Museum, The authors of some laboratory notes on this
leather roll suggest its date as 17th century B.C. (see the Introduc-
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tion to Document IV.S5, note 3). It consists of duplicate copies of
26 sums of unit fractions, that is, of a series of equalities that were
no doubt aids for calculating with fractions. I shall discuss this
document later in this chapter.

6. Document IV.6: sections G-I of Reisner Papyrus I of the
Museum of Fine Arts in Boston. Its editor, W. Kelly Simpson, be-
lieves these sections date between IV Peret 6 and II Shemu 20 of
Sesostris I in the 12th dynasty (see the Introduction to Document
IV.6, n. 3 and the text which that note supports).

As I shall explain in the translation of the document, it is an
actual account record of the volumes of material removed in a
building project and the man-days required in the undertaking.
Thus, as an accounting document, it contrasts sharply with the pre-
ceding documents that present model problems of calculation and
/or tables to assist in their preparation.

Basic Concepts of Egyptian Mathematics

Many students of Egyptian mathematics have singled out
the fundamental importance to its whole structure of the concepts
of doubling a quantity, halving it, taking two-thirds of it, multiply-
ing it by 10, and taking 1/10 of it, and of finding fractional multipi-
ers by the use of reciprocals of the products resulting from the use
of the above-mentioned multipliers. Singly, or in conjunction with
these concepts, along with the ordinary addition of numbers (both
whole numbers and fractions, the latter with the concept of
“auxiliary numbers or red auxiliaries” not unlike the assumption of
common denominators in later arithmetic), are those used through-
out the documents whose translations appear below, as I shall illus-
trate shortly. But there are other fundamental concepts that emerge
from an examination of the documents. The following stand out:

(1) The fundamental concept of counting as well as that of
measuring, These we have already mentioned in the preceding sec-
tions, and with them the fundamental signs or characters invented
to keep track of the results of the counting and measuring. We
should also point out that connected with the early concept of
mathematics as measurement is the concept of “rounding off” or
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approximating fractions when it is obvious that the efforts of mul-
tiplication and division of fractions produce unit fractions so small
(i.e., with denominators so large) that there is no practical way of
measuring them. This approximating of fractions is evident in
practical accounting tables like those exhibited in the Reisner Papyri
(Document IV.6 below) and in the table of the distribution of por-
tions of bread and beer at the temple of Hlahun in the Middle King-
dom (see the end of the section called “Pefsu Problems” in this
chapter, text over note 61),

(2) The basic idea of recording the aids to calculation in the
form of tables. Examples: (a) the “Table of Two,” which (as said
before) is a table given in the first part of Document IV.1 for find-
ing the quotients of divisions involving a dividend of 2 and divisors
that are successively the odd numbers from 3 to 101, the quotients
being expressed as the sums of unit fractions; (b) the “Table of the
Division of the first 9 units by 10” that follows after the Table of
Two; (c) the “Table of the Division of 100 Heqat by 10 and the
succeeding |10 multiples of 10” (Document IV.1, Problem 47); (d)
Table for the Multiplication of Fractions (ibid., Problem 61), (e)
“Tables of the Reckoning of Henu from Horus-Eye fractions of a
Heqat” (ibid., Problems 80-81); and (f) a Table of Equalities of
Fractions (Document IV.5). All of these tables will be discussed in
later sections of this chapter.

(3) The concept of model problems and the generalizing of

problems seeking an unknown quantity (aha) as incipient steps to
mathematical generality. This will also be discussed below.
) (4) The concept of proof by testing. Throughout Document
IV.1 we see the result or solution has been used to satisfy the
conditions of the problem, i.e., to say, it is a common practice in the
problems to work backwards with the calculated answer in order to
show that it fits the enunciation of the problem.

(5) The concept of standard calculating formulas for the
determination of areas and volumes in terms of rectilinear dimen-
sions, the figures being squares, rectangles, triangles, circles, trape-
zoids, rectangular and cylindrical containers. All of this will be dis-
cussed in the sections on areas and volumes below.
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(6) The concept of the slope of an isosceles triangle (and
thus of pyramids and a cone). This will be discussed in the relevant
sections on geometry below.

(7) The concept of quadrature, that is, the reduction of
curved figures in two or three dimensions to figures bounded by
straight lines or planes. This begins a study that leads from Egyp-
tian mathematics through the brilliant efforts of Greek geometry
(and above all in the works of Archimedes) to modemn geometry,
and I shall have something to say of this later in the chapter,

Egyptian Arithmetical Procedures

Modern arithmetical procedures depend fundamentally on
the decimal place value system. As I have said earlier, though the
mathematicians of Ancient Egypt had a primitive place value sys-
tem, it never became an essential part of their calculating proce-
dures. However, addition and subtraction depended on shifting to
higher or lower powers of ten when the simple operations de-
manded. But multiplication (and division also, as we shall see later)
were accomplished by a series of fundamental multipliers, ie.,
multiplying by 1, doublings, taking of 2/3, halvings, multiplying by
10, or taking of 1/10, using as many of these operations as were
needed to accomplish the calculation. These procedures are ex-
emplified throughout the solutions of the various problems given in
Document IV.1. In the course of solving Problem 32 involving an
unknown quantity (an aha-problem) we see the incidental multipli-
cation of 12 x 12 completed as follows:

1 12

2 24

\4 48
\8 96
Total: 144,

In this table we see the first column is headed by the unit
multiplier and followed by successive doublings as multipliers, the
second column by the multiplicand and the successive products of
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doubled multipliers, until there are laid out such doubled multipliers
that add up to the multiplier specified in the multiplication stated as
the objective of the table. The desired multipliers that so add up are
checked and the addition of the products given in the second col-
umn opposite the checked multipliers gives the final answer, which
is indicated below as a total. The same desired multiplication of 12
x 12 could have been performed as in the table I have given in the
second version (i.e., my first reconstruction) of Problem 43 in
Document IV.| below, but this time by using one doubling and one
multiplication by 10:

1 12

\2 24
\io 120
Total: 144,

And in this reconstruction of Problem 43 we would also see
a preceding table yielding the solution of the multiplication of 1 1/3
x 9. Here we find the pivotal role of taking 2/3 of 9, and following
it by taking 1/2 of 2/3, i.e, 1/3:

\1 9
2/3 6
\173 3
Total: 12.

Finally in Problem 44, we see a table in which occur multi-
plications by 10, by 20 (i.e,, by 2 x 10), by 1/10 (twice), and by 2/3
of 1710 of 1/10, i.e., by using all of the fundamental multipliers:

1 75
10 750
\20 1500
1/10 [of 1500] 150
1/10 of 1/10 15

2/3 of 1/10 of 1/10 10.
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As we saw from the last example, three of the fundamental
multipliers used were fractions, i.e, 2/3, 1/2, and 1/10. Before
taking up the basic procedures with fractions, we should first re-
mark on the Egyptian techniques of division. If we should look at a
table involving the division of 144 by 12, we would see precisely
the same two columns of figures as are present in the multiplication
of 12 x 12 (except that we have given here the total addition of the
first column as well as that of the second):

1 12

\2 24

\10 120
Total:12 144,

While the calculations look alike when presented as a table,
a question is being asked for division that is different from that for
multiplication. Instead of asking for the sum of the products in the
second column (24 and 120) that are opposite the checked multipli-
ers of the multiplicand in the first column (i.e., 2 and 10), which add
up to the original given multiplier (12), as we were in the multipli-
cation of 12 x 12, we are now asking for the quotient as the sum
(12) of the two multipliers (namely, 2 and 10) that together yield a
sum of those products in the second column that add up to the divi-
dend (144). As the Egyptians would say, we are “calling up 144 by
operating on 12”; thus we are finding the quotient (12) as the sum
of those multipliers of the divisor that added together produce the
dividend (144).

Let us now shift to a more complicated division involving
fractions performed in the course of Problem 66. This division
solves the problem of finding out the uniform amount of fat in heqat
and ro (= 1/320 of a heqat) distributed each day if we start with 10
heqat of fat for the whole year. After reducing the 10 heqat of fat
to ro, i.e., 10 x 320 = 3200, and the year to 365 days, the division
of 3200 by 365 (that is getting “3200 by operating on 365”), is ac-
complished as follows:

1 365 [cont.]
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2 730

4 1460
ns 2920)
\2/3 243173
\1/10 36 1/2
\1/2190 1/6

Total: 8 2/3 1/10 1/2190.

It is evident from this table that after having produced 2920
by using 8 as the multiplier (obtained by successive doubling), the
calculator cannot even add the product of 1 x 365 without exceed-
ing the dividend 3200. Hence he proceeds to the largest allowable
fractional multiplier, which is 2/3. But that only gives him 3163
173, still short of the dividend 3200. Furthermore, he sees that he
cannot use the next largest allowable fraction, i.e., 1/2 as a multi-
plier of 365, because again he would exceed 3200. So he proceeds
to 1/10, the last of the standard fractional multipliers. But now his
product is 3199 5/6, still 1/6 short of the dividend 3200. To get the
final multiplier of 365 to produce the missing 1/6, he sees that the
multipliers 4 and 2, i.e,, 6 in total, yield a product of 2190. So he
uses the reciprocal of that product, namely, 1/2190 to produce the
final 1/6 and the addition of all the checked multipliers will produce
the quotient of 3200:365, i.e., 8 2/3 1/10 1/2190. In Problem 66
the reader will note that the answer given in the table is expressed
entirely in ro, but that answer is also converted in the preceding
enunciation into //64 heqat 3 2/3 1/10 1/2190 ro, since 5 ro = 1/64
heqat (that fraction being the last of the 6 Horus-eye fractions of a
heqat mentioned earlier). We shall also see in a moment that the
use of reciprocals to produce the fractional parts that add up to the
final quotient is a very fundamental technique of the Egyptian
method of division. Furthermore, this problem with its use of recip-
rocals as fractional multipliers also reflects one of the principal
benefits of the Egyptian procedure of always giving fractional ex-
pressions as the sum of unit fractions. Hence we are now ready to
discuss in detail the Egyptian procedures with such unit fractions.
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Unit Fractions and the Table of Two

Any reader who browses through the six documents that
constitute the core of my treatment of Egyptian mathematics will
see immediately how prevalent calculations with unit fractions are
in the solutions of the problems presented. For example in Docu-
ment IV. 1, by far the longest and most complete document included
here, every entry in the Table of Two and all the problems but Nos.
48, 62, and 77-79 involve some calculation with fractions, either as
fractions alone or as parts of mixed numbers. I have already noted
that, aside from 2/3 and possibly 3/4, the only fractions expressed in
the calculations given here are those with numerator 1, to express
this in modern terms. As I have pointed out, the use of the number

1 is used here to represent the symbol == (“7) in hieroglyphics (the
mouth-sign meaning “part”) which is reduced to a superior dot in
hieratic, with the number of the denominator written below these
symbols (see Fig. IV.1c, Table CC, cols. Hierog. and Math., or
passim in Figs. IV.2a-aaa). This practice of writing fractions is
followed in hieroglyphics from 1/3 on and in hieratic and demotic
from 1/5 on.”® The signs for the earlier fractions were special and
did not follow the general practice for writing fractions, which I
have just mentioned. Furthermore, special signs were used for 2/3
and, occasionally, for 3/4, meaning respectively “two of three
parts” and “three of four parts.” Gardiner’s observations on frac-
tions and “part” are worth quoting:”®

For the Egyptian the number following the word r had ordi-
nal meaning, mn r-5 means ‘part §’, i.e. ‘the fifth part’
which concludes a row of equal parts together constituting a
single set of 5. As being the part which completed the row
into one series of the number indicated, the Egyptian r-
fraction was necessarily a fraction with, as we would say,
unity as the numerator. To the Egyptian mind it would have
seemed nonsense and self-contradictory to write r-7 4 or the
like for 4/7; in any series of seven, only one part could be
the seventh, namely that which occupied the seventh place
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in the row of seven equal parts laid out for inspection. Nor
would it have he!pedeacéteg fcrgm the Egyptian point of
View tO have Wﬁtten lllllll ll|l|ll llll|ll ”Ill” r-7 (+) r-7 (+) r-7 (+) r-
7, a writing which would have likewise assumed that there
could be more than one actual “seventh”. Consequently, the
Egyptian was reduced to expressing (e.g.) 4/7 by 1/2 (+)
1/14. For more complex fractions even as many as 5 terms,
all representing fractions with 1 as the numerator and with
increasing denominators, might be needed [or still more
terms, e.g., see Document IV.1, Problem 37, where in the
proof 10 unit fractions are added to produce 1.]....It is not
generally known that the same cumbrous methods of ex-
pression were in common use with the Greeks and the Ro-
mans.

Gardiner’s explanation that 4/7 = 1/7 + 1/7 + 1/7 + 1/7 was
not used because it “would...have assumed that there could be more
than one actual ‘seventh’ does not seem to be the correct explana-
tion for reluctance to write more than 1/7 in the series of unit frac-
tions that one used in the Table of Two and elsewhere to express
the quotient as a series of unit fractions in which the denominators
differed from each other. The correct explanation seems to me to
be that of van der Waerden in his account of the Table of Two
given below (text over note 33): “Now if a unit fraction, say 1/7, is
doubled, one gets 1/7 + 1/7, and if this is doubled once more, an
unwieldy expression like 1/7 + 1/7 + 1/7 + 1/7 is obtained. To
avoid this, the Egyptians devised a method to rewrite [it] as a sum
of different unit fractions.” It is obvious that when the Egyptian
mathematician composed tables of equalities giving the sums of unit
fractions like those in Document IV.5 (the Mathematical Leather
Roll) where, in a sense, numerical quantities alone are given
throughout the equality and no specific measurement is involved,
unit fractions with the same denominators are often added, as the
reader will readily see.

We should realize that in the case of the summing of the 10
unit fractions in Problem 37, which I inserted in brackets in the pre-
ceding quotation from Gardiner’s Grammar, a procedure similar to
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reducing fractional denominators to a common denominator is in-
volved.” In fact, it is also used in the table preceding the one in
the proof. Let us review the whole problem. It involves the finding
of an unknown when (3 + 1/3 + 1/9 + 1/9 ) times the unknown
equals 1. First he shows that the sum in parentheses multiplied by 1
sums at 3 1/2 1/18, which is equivalent to first assuming that the
unknown quantity is 1. Then to find the value of the unknown
quantity the following table is presented that calls up 1 by operating
with 3 1/2 1/18, i.e., by dividing 1 by 3 1/2 1/18:

Call 1 out of 3 1/2 1/18,

1 3121118
172 11/21/41/36
\1/4 1/21/4 1/8 1/72
1/8 1/4 1/8 1/16 1/144
1/16 1/8 1/16 1/32 1/288
\1/32 1/16 1/32 1/64 1/576
Total: 1 [for if we] add

1/2 1/4 1/8 1/72 1/16 1/32 1/64 1/576 [we get 1. Now]
8 36 18 9 1
[are the values of the smaller fractions under which they are written
when taken as parts of 576. These parts] total 72 [which is] 1/8 [of
576. Therefore the answer is 1/4 1/32).

That is to say, 1/4 1/32 is the value of the unknown quan-
tity. This is shown by the author when he considers the smaller
fractions beginning with 1/72 and ending with 1/576 as a series of
parts of 576, the least common number, the one embracing all of
the denominators of the smaller fractions. Those numbers of parts
given here in bold type (i.e., rubricated in the papyrus, and hence
may be called “red auxiliaries™) add up to 72. But 72/576 is 1/8,
and thus if we add the larger fractions 1/2 1/4 1/8 to the 1/8 just
determined, we see that the list of fractions given in the total are
just the fractions opposite 1/4 and 1/32. Thus the value of the un-
known is 1/4 + 1/32. The reader will notice, if he turns to the Ex-
ample of Proof in Problem 37, that the table showing the multipli-
cation of the computed unknown (1/4 1/32) by the numbers of the
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“unknown quantity” specified at the beginning of the problem,
namely 3, 1/3, 1/3 of 1/3, and 1/9, employs the same technique of
converting the denominators of the smaller unit fractions into inte-
ger parts (or red auxiliaries) of the common denominator (288) in a
manner precisely like that described in the table given before it,
which we have reproduced above. This same sort of use of a com-
mon denominator and the red auxiliary numbers is seen in the com-
pletion Problems 21-23 of Document IV.]1, and in Problem 36
where the author sums 16 [!] unit fractions as parts of a common
denominator (1060) and in Problem 38 where he sums 7 unit frac-
tions as whole number parts (or red auxiliaries) of a common de-
nominator (66). We should note that the parts as applied to com-
mon denominators may be as integers, or numbers comprised of
integers and unit fractions, sometimes written in red and sometimes
not. Good examples appear in the completion Problems 7A, 7B, 8,
13-15, and 19-20 of Document IV.1, though the whole group of
completion problems 7A-20 involves common denominators. I re-
produce here only Problem 7A:

[Multiply 1/4 1/28 by 1 1/2 1/4.)]
Example of completion (tp n skmi):
1 1/4 1/28 [as parts of 28 these are] 7 fand] 1
1/2  1/8 1/56 [as parts of 28 these are] 3 1/2 [and] 1/2
1/4  1/16 1/112 [as parts of 28 these are] 1 1/2 1/4 [and]
1/4
Total:  1/2 [since as a part of 28 this is 14].

It is obvious to the reader that the bold (i.e., red) auxiliary numbers
written in the right column represent the unit fractional sums as
parts of 28, and that those numbers include both integers and unit
fractions, as do the red numbers given in the division of 2 by 7
given below in note 35.

Having explored some of the fundamental Egyptian arith-
metic procedures applying to multiplication, division, and the addi-
tion of unit fractions with or without the use of red auxiliaries, we
should now examine the Table of Two, occupying the first part of
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the Rhind Papyrus (for the hieratic text of the table and its hiero-
glyphic transcription see Figs. IV.2a [Plate 2]-IV.2q [Plate 33]).

A fair question raised by modern students of the table was
whether there was some general formula or formulas that were used
to accomplish the various divisions of 2 by the odd numbers from 3
to 101. The consensus of investigators seems to be that there were
no general formulas used by the Egyptians to construct the table
and hence that there were instead sets of trial procedures used, as
we shall see shortly. But the problem of constructing the table has
always appealed to mathematicians, who have given interesting
modem interpretations (even involving computer generations of
possible alternative solutions of the table) but hardly ones that add
much to the actual empirical construction of the table given in the
Rhind Papyrus. Of the extensive literature on the Table of Two I
shall discuss or quote from only a strictly limited number of works
produced over the last century and one-quarter, i.e., since the first
publication of a facsimile edition of the Rhind Papyrus in 1871 by
Eisenlohr.”

A good place to begin our discussion of the Table of Two is
with F. L1 Griffith’s treatment of it in 1894, a few observations
from which I now quote, with my additions in brackets:®

Since the Egyptians possessed no expressions for
fractions with a numerator above unity [except, of course,
2/3 and 3/4], they were compelled to exercise their ingenu-
ity in order to make the root [or unit] fractions
(Stammbriiche in German)®* serve the same end. They
were not satisfied with such clumsy expressions as 1/15 +
1/15 + 1/15 + 1/15 + 1/15 + 1/15 + 1/15 for 7/15: consider-
ing the notion of 7/15 as the division of 7 by 15, they could
have reckoned 5+15 = |/3, 2 remaining to be divided by 15:
this latter would then be found to be equivalent to 1/10 +
1/30, so that the notion 7/15 could be expressed as 1/3 +
1/10 + 1/30.

Now it has been pointed out by Professor Cantor
that any simple fraction can be resolved into Stammbriiche
by subdivision into Stammbriiche (1-fractions [i.e., fractions
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with numerator 1)) and 2-fractions [i.e., fractions with nu-
merator 2] (given that 2/11 = 1/6 + 1/66, 5/11 = 1/11 +
211 +2/11 = 1/11 + 2/6 + 2/66 = 1/3 + 1/11 + 1/33), and
that the Egyptians became aware of this.

It was to supply the want of a 2-series, and to re-
solve these 2-fractions into...1-fractions, that the Egyptians
formed tables of the division of 2, expressing, e.g., the divi-
sion of 2 by 13 not as 2/13 but as 1/8 + 1/52 + 1/104: divi-
sions by the odd numbers alone were required, for 2 divided
by an even number could be reduced at once to the 1-series,
From Kahun there is a table of the simplest kind, reaching to
2421 [see Document IV.3 below, 4 Table of Two), but the
first table in the Rhind Papyrus is carried as far as 2+101
[corrected out of 99; see Document IV.1, last entry in the
Table of Two])....

A good series of solutions for the lower numbers
might have been obtained from the formula (put into alge-
bra)}—

2/n=1/a + l/na, where a=(n+1)/2
[the 2/n and |/a terms are later corrections by Peet out of
the misprints z/n and 1/ (a/2) }....

An easily used formula is of great value in calcula-
tion, but for this stereotyped table the Egyptians made a
wise selection from the possible values without being bound
by any formula.

The author of the table undoubtedly chose the val-
ues that could be most readily utilized according to his sys-
tem of dealing with fractions, a system which was founded
on the [basic] multiplication of whole numbers [i.e., by
doubling, multiplying by 10, etc.], and on division by 1/2,
starting from 1 or 2/3; only in cases of necessity using the
cumbrous system of a greatest common measure [i.e., the
so-called red auxiliaries, which in fact were not always the
“greatest” common denominator, as has been noted above).
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In pursuing the fundamental empirical procedures used in
proving and presenting the various divisions of 2 by the odd num-
bers beyond the analyses and judgments given by Griffith, we
should like to examine the crucial textual work of two other stu-
dents of the Rhind Papyrus, both of whom, like Griffith, had supe-
rior knowledge of the language along with a thorough understand-
ing of the literature on Egyptian mathematics produced in the first
half-century after the original publication of the Rhind Papyrus by
Eisenlohr. The first of them is T. Eric Peet.” Peet first presents the
entry for 2+7 as given in the Table of Two, which I have rendered
as follows in Document IV.1 below:

1/4 [of 7is] 1 1/2 1/4, 1128 [of 7] is 1/4.

1 7

12 3112 1 7
\1/4 1122114 2 14
\4 28 174 4 28.

Then Peet comments [with my additions]:

There is no doubt as to what takes place here. The 2 is bro-
ken up into two parts, namely (1 1/2 + 1/4) and 1/4. The
first of these is then shown to be 1/4 of 7 by the simple
process of dividing 7 by 2 and then by 2 again, while the
second is shown to be 1/28 of 7 by multiplying 7 by 4 and
obtaining 28 [and then using its reciprocal, though Peet fails
to state the obvious).

As a proof this is satisfactory, but it does not throw
the slightest light on the one feature of interest in these
problems, namely the manner in which the Egyptian ob-
tained his answer, which, be it noted, is not worked out at
all, but merely assumed and then proved. To arrive at the
method by which the answer was obtained it is necessary to
examine the whole series of resolutions from 2/3 to 2/101,
and to try to discern in them any signs of the employment of
a general formula....
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In the case of all... fractions whose denominator is a
multiple of 3 [other than 2/3 itself which is not reduced] a
very obvious resolution presented itself, for the numerator 2
could be broken up into 1 1/2 and 1/2, and since 1 1/2 di-
vides exactly into 3 and all its multiples the problem was at
once solved. Thus: 2/9=(11/2+1/2)/9=1/6+ 1/18 [the
1/18 being determined by taking the reciprocal of the double
of 9].

Similarly those fractions whose denominator was §
or a multiple thereof could be dealt with by breaking up the
numerator 2 into 1 2/3 and 1/3. Thus 2/25=(12/3 +1/3)/
25 = 1/15 + 1/75. In this way the denominators 5, 25, 65,
and 85 were dealt with, 15, 45 and 75 having been already
treated as multiples of 3, 35 being treated irregularly, 55 as
a multiple of 11, and 95 as a multiple of 19.

When the denominator was divisible by 7 the 2 was
broken up into....1 + 1/2 + 1/4...and 1/4....In this way were
resolved 7, 49 and 77; 21 and 63 were treated as multiples
of 3, and 35 and 91 were dealt with irregularly.

In the case of 11 and its multiple 55 the 2 was re-
solved into 1 2/3 +1/6....and 1/6.

Up to this point it may be said that the method has
been marked by considerable regularity. We are now left
with the prime numbers between 13 and 97. A modern
mathematician would probably treat these, as indeed all
numbers, by some such formula as that suggested by Griffith
[given above in my quotation from his article]....which has
the advantage of resolving each 2-fraction into two aliquot
parts only, but the disadvantage of giving a second fraction
with a very high denominator, The Egyptian was bound by
no fetters of this kind, for the simple reason that he reached
his results not by formula but by trial. An inspection of
them is sufficient to show this. Even in the treatment of
multiples of the lower prime numbers we have already seen
that there was some irregularity, and this is only emphasized
when we come to the higher prime numbers.
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Eisenlohr has attempted to embrace the Egyptian
results [concerning the Table of Two) under a series of rules
which he enunciates as follows:

1. Resolution into three fractions was preferred to
resolution into four,

2. If a resolution existed (i.e. could be found) in
which the denominator of the first root-fraction was the
product of factors which when separately multiplied by the
denominator of the original 2-fraction give the denomina-
tors of the remaining root-fractions, if, that is to say, 2/n
could be broken up into 1/ab + 1/an + 1/bn or into 1/abc +
1/an + 1/bn + 1/cn, then this resolution was chosen. Oth-
erwise that in which the denominator of the first root-
fraction was not ab but ab”2, ab3, ab/4, or ab/8 was
adopted.

3. High factors of the original denominator were
avoided.

It is true that as a matter of actual fact the resolu-
tions given by the Egyptian do to some extent conform to
these rules. Thus the resolutions of 17, 31, 37, 43, 47, 59,
67, 73 and 97 conform to the simple formula given above;
in the case of 19, 41, 71, 79, and 83 the denominator of the
first root-fraction is ab2, in the case of 53 it is ab/3, in the
case of 13, 29, and 89 it is ab/4, and in the case of 61 it is
ab/8. But even here Eisenlohr’s rules are by no means con-
sistently carried out....

The fact is that Eisenlohr is here employing a
method of analysis which ought not to be applied to Egyp-
tian mathematics, Even could we show that all the results
corresponded to a formula this would not prove that the
Egyptian worked by this formula, and if Eisenlohr means to
imply that he did he is undoubtedly wrong. The Egyptian,
far from employing a formula, probably had no conception
that the resolution could be accomplished by a single
method in all cases. He had indeed observed that where the
denominator of the 2-fraction was a multiple of 3 the same
resolution could be used as for 3 itself, and similarly for S,
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7, and even 11; but when it came to the higher prime num-
bers he had no formula to help him.

His method was undoubtedly that of trial. He had
grasped the fact that the problem consisted in breaking up 2
into the sum of several quantities each of which would di-
vide without remainder into the given denominator....

Peet goes on to detail the trial methods and gives finally a
table that “will enable both the results and the method employed in
obtaining them to be seen at a glance.” This table I have given as
Fig. 28. But, in fact, one needs more than a glance. And thus other
students of the Table of Two have gone to great length to detect
the various trial procedures used by the Egyptian author.

One of these authors is A.B. Chace whose edition is superb
and whose explanation of the procedures employed by the author,
while not quite so analytical as some of the later treatments of the
hypotheses proposed for the construction of the Table of Two de-
scribed below, is still well worth examining:*

In reproducing the table [as given on pp. 21-22 = my
Fig. IV.29] I have marked the different cases A, B, AD,
BD, C and E; that is, I have used:

A when the author first takes 2/3;

B when he simply halves;

D along with A or B when he also uses 1/10 or 1/7;

C when at some step he gives a whole number and
uses its reciprocal as a multiplier;

E for the three special cases of 35, 91, and 101.

Following Chace I shall illustrate each type of procedure by
examining one example, except for the longer descriptions of the
procedures in the cases of the divisions of two by 35, 91, and 101,
which are somewhat longer and I leave to the reader. For case A
(involving the taking of 2/3 as the first step) let us look at 2/17, the
first problem in the table for which the method is completely given:

[2 divided by 17] [cont.]
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Call 2 out of 17 [i.e., Get 2 by operating on 17).
1712 [of 17is ] 1 1/3 1/12, 1/81 [of 17 is] 1/3, 1/68 [of 17 is] 1/4.
Procedure;

1 17

273 1113

173 523 17

16 21213 \2 34
\1/12 11/41/6 [Total:] 3 51 1/3
Remainder® 1/3 1/4 4 68 /A

Its evident that we must find multipliers of 17 that will pro-
duce products that add up to 2. We first try 2/3 as a multiplier and
we have of course far exceeded the required 2, which we are trying
to call up out of 17. Hence, the author indicates, we must take
successive halves, namely 1/3, 1/6, 1/12, With 1/12 he arrives at a
product that is less than 2, namely 1 1/4 1/6, This is short of 2 by
the amount 1/3 1/4, which he calls the remainder. To find 1/3 of 17,
the author multiplies 17 first by 1 and then by 2, which products
added together equal 51. Then, taking the reciprocal of 51, i.e,
1/51, and multiplying it by 17 the author gets 1/3. In precisely the
same way, the author finds that 1/68 of 17 is 1/4. Accordingly the
full division has been made, and the complete answer is 1/12 1/51
1/68. The method of finding the required remainder, namely 1/3
1/4, is thus like that given in the completion problems (21-23) of
Document IV.1.

As an illustration of the second kind of procedure, that is, B
where the first step is to use a multiplier of 1/2, is the division of 2
by 13. First I give my version of the division:

[2 divided by 13]
1/8 [of 13 is] 1 1/2 1/8, 1/52 [of 13 is] 1/4, 1/104 [of 13 is] 1/8.
1 1[3)
122 612
/4 314
\1/8 11218
\4 52 1/4
\8 104 178
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As in type A, we see here that after successive halvings of the first
fractional multiplier (1/2 here), we reach 1/8, which yields, as a
product less than 2, 1 1/2 1/8. The remainder in this case to make
2is 1/4 and 1/8. As before the multipliers to produce the remainder
are found by taking the reciprocals of the products given by multi-
plying 13 by 4 and 8 respectively, that is 1/52 and 1/104.

Procedure AD is exemplified by the division of 2 by 25,
which I give from Document IV.1 below:

[2 divided by 25]
1/15 [of 25 is) 1 2/3, 1775 [of 25 is] 1/3.
1 25
115 123
\3 75 1/3.

Here the author probably first took 1/10 of 25, i.e., 2 1/2,
and then 2/3 of that, resulting in 1/15 of 25, which is thus 1 2/3, It
is obvious that this was short of 2 by 1/3, which he determined by
taking the reciprocal of 3 x 25, or 1/75. This gave him as the final
answer or quotient stated in the first line, namely 1/15 1/75.

Procedure BD is represented by the division of 2 by 31,
presented from Document IV.1 below:

[2 divided by] 31
1/20 [of 31 is] 1 1/2 1/20, 1/124 [of 31 is] 1/4, 1/155 [of 31 is)
1/5.

1 [31)
\120 1112120
\4 124 1/4
\S 155 1/5.

The first, unspecified fractional multiplier was obviously

1/10, which would give a product of 3 1/10. Then taking half of

that multiplier, i.e., 1/20, the product as given is 1 1/2 1/20, the first

product below 2, The remaining multipliers to add up to 2 are 1/4

and 1/5. Then, as in the other examples, we find the remaining unit
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fractions by taking the reciprocals of 4 x 31 and 5 x 31, thus obtain-
ing the unit fractions 1/124 and 1/155, and hence producing the
complete answer 1/20 1/124 1/155.

As an example of procedure C, Chace analyzes 2 divided by
21, as given in Document IV.1 below:

[2 divided by 21]
1/14 [of 21 i) 1 1/2, 1/42 [of 21 is] 1/2.
1 21
\23 14 1112
2 4 12,

This can hardly be conceived of as a separate category, ex-
cept that all of the products are whole numbers, and as usual we
find the final unit fractions by taking their reciprocals. As Chace
points out, 21 is a multiple of 3, and thus 2/3 of 21 is 14 and hence
1/14 of 21 is 1 1/2. The remainder to add up to 2 is 1/2. Then the
reciprocal of 2 x 21 is 1/42. Hence the complete quotient is 1/14
1/42. Chace analyzes the division of 2 by 65 in a similar way, not-
ing that 65 is a multiple of S. As I have said earlier, I leave Chace’s
analysis of the special cases of the divisions of two by 35, 91, and
101 to the reader’s perusal. But I find his final comments on the
Table of Two to be of interest:”

All of these various cases seem to indicate that there
was no definite rule for determining the multipliers to be
used, but probably the slow experience of different writers
suggested different multipliers for different examples, as
they seemed to them the easiest or gave results in the most
satisfactory form.

In the table as here reproduced [see Fig. IV.29] I
have put: first, the letter or letters indicating the kind of
multipliers employed; second, the number [i.e., the odd-
number divisor of 2]; third, the first fraction of the answer,
this being the multiplier that produces a number a little less
than 2; then the number a little less than 2 that is produced
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by this multiplier; the remainder necessary to make 2; and
finally, the answer.

To complete this discussion of the Table of Two, I wish to
illustrate the opinions of more recent students, centering on the
treatment of the Table of Two by B.L. van der Waerden. It will be
noticed that the author refers to the hypotheses of Neugebauer and
Vetter.” Now for some of the highlights of van der Waerden’s
paper of 1980.*° After detailing the fundamental Egyptian arith-
metical procedures we have already described in some detail, he
succinctly comments on (pp. 262-63) the use of auxiliary numbers
(1 have called them here the “red auxiliaries”™):

In order to perform a division it is sometimes necessary to
calculate the supplement that must be added to a given sum
of unit fractions in order to obtain 1. In the example (2:17)
just explained [in the account explaining Chace’s category
A] the given sum of unit fractions was 1/4 + 1/6, and the
supplement 1/3 + 1/4. In this case it was easy to see that
1/4 + 1/6 plus 1/3 + 1/4 is 2, but in higher cases it is not so
easy to find the required supplement. Therefore, a whole
section of the Rhind Papyrus is devoted to this problem.
For its solution, auxiliary numbers were introduced. They
were also used to check whether a given sum of fractions is
equal to another sum of fractions.

Before going on to analyze the Table of Two, van der
Waerden points out that the Egyptian mathematicians used another
method of establishing equalities. This is found in the Mathematical
Leather Roll of the British Museum, which we give as Document
IV.5. From the equalities given there van der Waerden lists the
following two sequences:’*

1/9+1/18=1/6 114+ 121 + 1/42=1/7

1712+ 124=1/8 1/18 + 1127 + 1/54=1/9

1/15+1/30=1/10 1/22+1/33 + 1/66 = 1/11

1/18+136=1/12 [1/26+1/39+ 1/78]* = 1/13

*corr. by v.d.W. from /cont.]
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1/28 + 1/49 + 1/ 196

1721+ 1/42=1/14  1/30 + 1/45 +1/90 = 1/15.

1/24 + 1/48 = 1/16
Van der Waerden notes that the sequence on the left derives from
the equality of 1/3 + 1/6 = 1/2, labeled (1), (which is often used in
the Rhind Papyrus) by dividing it by 3, by 4, by 5, by 6, by 7, and
by 8. The second sequence can be derived in the same way from
the equality

12+13+1/6=1. @

“We shall see that the same method of deriving sequences of
equalities from one simple equality was used in the (2:n) table of
the Papyrus Rhind to obtain the results of divisions 2:7 in all cases
in which # is a multiple of 3.” After his preliminary remarks on the
procedures with fractions, van der Waerden, like most authors
treating the Table of Two, categorizes the various entries into 5
groups according to the pattern used:*

A. The 2/3-group. It consists of those divisions in
which # is a multiple of 3. They all follow the same pattern:

2:3m=1/2m + 1/6m.

B. The division group. The calculations in this
group are just standard divisions...in which either the 2/3 -
sequence [i.e., 2/3 1/3 1/6 ...] or the 1/2 - sequence [i.e., 1/2
1/4 1/8 ...] is used. The results of these divisions all have
the same form

2:n=1/x+ Ukin+ Vkan + Vksn 3)
with 2 or 3 or 4 terms on the right, x being an integer be-
tween 1/2n and n. If the 2/3 - sequence is used, x is 3 or 6
or 12 or 24, but if the 1/2 - sequence is used, x is a power of
2.

Examples:

2:5=13+1/15

2:7=1/4+1/28

2:11=1/6 + 1/66

2:13=1/8 + 1/52 + 1/104,
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To this group [then] belong the divisions (2:7) with n = 5,
7,11,13, 17,19, 23, 29, 37 and 41.

C. The derived group. The divisions of this group
can be derived from those of group B by multiplying all de-
nominators by 5 or 7 or 11 or 13 or 17. Thus, from

2:5=13+1/15
one derives

2:25=1/15 + 1/75.

This group contains the cases n = 285, 49, 55, 65, 77, 85,
95.

D. The algorithmic group. In this group the results
of the divisions also follow the pattern [of] (3), but the de-
nominator x is neither 2* nor 3 times 2*. The divisions of
this group can only be understood by assuming the use of
the algorithm of auxiliary numbers.

E. Three exceptional cases remain, namely n = 35
and =91 and n = 101. In the last case a “trivial” decom-
position is given:

2:101 = 1/101 + 1/202 + 1/303 + 1/606,
In the former two cases the results of the divisions cannot
be written in the form (3).

But van der Waerden gives the results of these divisions as-

signed to group E, needless to say, as presented below in Docu-
ment IV.1. He notes that of the three it is only in the case of 2:35
that auxiliary numbers are given in the papyrus, and he goes
through the steps given in the text. Having thus presented the pat-
terns of the 5 groups of divisions found in the 2:n table, van der
Waerden then succinctly and clearly presents the hypotheses pro-
posed by Neugebauer, Vetter, and Vogel (in various of their ac-
counts cited in note 29) and their motives for proposing such hy-
potheses. This account I leave to the reader, quoting here only van
der Waerden’s concluding remarks.*

The kernel, from which the calculating apparatus of
the Rhind Papyrus was developed, was the algorithm of
Egyptian multiplication, in which the main operation was
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doubling. Now if a unit fraction, say 1/7, is doubled, one
gets 1/7 + 1/7, and if this is doubled once more, an unwieldy
expression like 1/7 + 1/7 + 1/7 + 1/7 is obtained. To avoid
this, the Egyptians devised a method to rewrite [it] as a sum
of different unit fractions, e.g.

1/7+1/7=1/4+1/28
which can be doubled again and again without any difficulty.

The Egyptian solution of this rewriting problem,
codified in the (2:m)-table, is based on three fundamental
ideas:

First idea; If you want to rewrite 1/n + 1/n as a sum
of fractions, you should ask: What part of 7 is 2?7 A stan-
dard division of 2 by » will give you the answer,

Second idea: From the obvious equality

13+1/3=1/2+1/6
you may obtain a whole sequence of equalities
18m+ 13m=1/2m + 1/6m,
Just so, from
1/5+1/5=1/3 +1/15 and
17+ 1/7=1/4+1/28
you may obtain results like
1/25 + 1/25 = 1/15 + 1/75.

Third idea: If you want to complete a sum of frac-
tions to 1 or to rewrite a sum of fractions as another sum,
you may multiply all given fractions by a conveniently cho-
sen integer D, and afterwards divide again by D. This is the
method of “auxiliary numbers”, which was certainly applied
in the case [of] 1/35 + 1/35, and probably in many other
cases.

The first idea was strongly stressed in the whole ar-
rangement of the (2:n)-table. The question “What part of »
is 27" was placed as a heading above every section of the
table [or in fact its equivalent “Call 2 out of #”], even in
cases in which the division 2:# was only a verification af-
terwards [i.e., a proof of the answer given at the beginning
of each entry].
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The second idea, the idea of serial derivation of a
whole sequence of equalities, is made clear by many exam-
ples in the Leather Roll [i.e., our Document IV.5].

The third idea is applied to many examples in the
sequel of the Rhind Papyrus [i.e., the part of Document
IV.1 after the 2:n-table]. Thus, it appears that the Papyrus
as a whole is a unity.

Following Peet, I formerly thought that the (2:n)
table was developed in the course of a long historical proc-
ess, possibly during many centuries. But now...I am more
inclined to believe that the whole papyrus is the work of one
man, who was at the same time an ingenious arithmetician
and a very good teacher,

Bruins in the article mentioned in note 29 (p. 81) had previ-
ously argued the slightly different conclusion that “an Egyptian
mathematician, in accordance with the arithmetic of his days, was
able to construct the table within a very short time, in any case
within a day!”

In concluding this account of the construction of the Table
of Two, I shall add one more opinion concerning the criteria that
the Egyptian mathematician followed in selecting the unit fractions
that constituted the quotients making up the table, This comes
from the 3Pe.rceptive account of Egyptian mathematics given by R J,
Gillings:

Opinions are quite varied on the precepts, standards, or
tests by which the scribe was guided in his choice of values
from the hundreds available to him., Some previous investi-
gators have attempted to give the scribe’s possible precepts.
I here present the five precepts which I believe were the
scribe’s primary guide, The fifth precept has not been sug-
gested, to my knowledge, by any previous writer...

PRECEPT 1 [cont.]
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Of the possible equalities, those with the smaller numbers
are preferred, but none as large as 1000 [890 being the larg-
est number in the table].

PRECEPT 2

An equality of only 2 terms is preferred to one of 3 terms,*

and one of 3 terms to one of 4 terms, but an equality of
more than 4 terms is never used.

PRECEPT 3

The unit fractions are always set down in descending order
of magnitude, that is, the smaller numbers [i.e., denomina-
tors) come first, but never the same fraction twice.

PRECEPT 4

The smallness of the first number [denominator] is the main
consideration, but the scribe will accept a slightly larger first
number, if it will greatly reduce the last number.

PRECEPT §

Even numbers are preferred to odd numbers, even though
they might be larger, and even though the numbers of terms
might thereby be increased.

Other rules and tables, some existing and some hypothe-
sized by Gillings and others, are described in the next section and
should throw further light on the calculating techniques exhibited in
the Table of Two. A prime example would be the table or tables of
multiplications by two-thirds mentioned as possibilities in the next
section.

Other Tables in Aid of Calculation

Following the Table of Two in Document IV.1, the author
ingerts a table of the division of the first 9 units by 10. Though we
are not told how it was developed, it is easy to see how the ordi-
nary techniques of division would have easily produced it. Division
of 1 by 10 is immediately obvious if we multiply 1 by 10 and then
take the reciprocal, namely 1/10. The division of 2/10 is equally
evident, since 1/10 and 1/10 yields 1/5, as the author could have
seen from a common table of equalities like that in Document IV.5
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(see Col. 2, line 4). The division of 3/10 is obviously the sum of the
divisions of 1/10 and 2/10. The division of 4/10 is equivalent to the
division of 2/5, whose solution is given in the Table of Two, The
division of 5 is immediately evident as 1/2. The rest of the entries
can be easily worked out by the sums of the various entries in the
first half of the table.® This table allows the quick solution of the
first six problems of the document, namely the division of 1, 2, 6, 7,
8, and 9 loaves among 10 men. Notice that the divisions of 3, 4,
and 5 loaves among the 10 men are missing. Perhaps the author
thought their solutions to be so obvious that they need not be in-
cluded. It should be remarked that in Problems 1-6 the given an-
swer is proved by the formal multiplication of the given answer by
multipliers that add to 10, thereby producing products that add up
to the given number of loaves being divided.

We should also notice that some such table as this one of
units divided by 10 would be useful in the building procedure of
determining the man-days of laborers needed for removing materi-
als, since it always involves the division of the volume of material
by 10, the amount that a single man was assumed to remove in a
day. I have suggested how this table might have been used to find
approximations to the sums of fractions in Document IV.6 (i.e.,
Reisner Papyrus 1, Sect. G, lines 10-11 and 14-15), where, in the
first example, the division of 39 by 10 is approximated at 4, perhaps
by rounding off the exact Egyptian way of expressing 3.9, namely,
3 2/3 1/5 1/30, the fractional part of which could have been quickly
obtained from the table.

Inserted as Problem 61 of Document IV.1 is a table of the
multiplication of fractions, that, at the least, is not in a coherent
position in the document. The first nine lines give the following
multiplications: 2/3 of 2/3 is 1/3 1/9; 1/3 of 2/3 is 1/6 1/18; 2/3 of
1/3is 1/6 1/18; 2/3 of 1/6is 1/12 1/36; 2/3 of V2is 1/3; 173 of 1/2
is 1/6; 1/6 of 1/2 is 1/12; 1/12 of 1/2 is 1/24; 1/9 of 2/3 is 1/18 1/54
or [putting it in another way] 1/9, 2/3 of it [i.e., 1/9] is 1/18 [1/54].
After a break in the text, the last five lines of multiplications are in
the different form found at the end of the ninth line: 1/5, 1/4 of it is
1/20; 1/7, 2/3 of it is 1/14 1/42; 1/7, 1/2 of it is 1/14; 1/11, 2/3 of it
is 1/22 1/66 and 1/3 of it is 1/33; [and] 1/11, 1/2 of it is 1/22 and
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1/4 of it is 1/44. The use of a second form of presentation seems to
remind the reader that the only “legitimate multipliers are 2/3 and
1/2, and fractions obtained from them by halving.™’ In the prob-
lem arbitrarily numbered 61B, which follows this table, is a general
rule for taking 2/3 of an odd fraction, i.e., of the reciprocal of an
odd number: take the reciprocals of the products of 2 times the odd
number and of 6 times the odd number, and these two unit fractions
together give the desired solution. But as the reader will see, the
author only illustrates the rule by taking the odd-number 5. Since
that solution is equivalent to the quotient of the division of 4 by 30,
i.e, 2 by 15, it is evident by the Table of Two that that division is
equal to 1/10 1/30, when expressed in the Egyptian manner.

The great frequency of the use of 2/3 as a multiplier of both
fractions and whole numbers displayed in the documents (and par-
ticularly in Document IV.1°®) has prompted scholars to pose that
the Egyptians prepared multiplication tables for multiplications by
2/3. Indeed the table of Problem 61 analyzed in the preceding
paragraph seems to indicate that such was the case for multiplying
the commonly used unit fractions by 2/3. But let us look at the
views of two proponents of the view that the Egyptians prepared
tables of 2/3 of both fractions and whole numbers, first to Peet’s
argument:*®

Strange as it may seem to us, the Egyptian was accustomed
to take two-thirds of a number by a single process. No
doubt he used tables for the purpose, but the mere fact that
tables existed is one more testimony to the fundamental na-
ture of the concept of “the two parts” in the Egyptian mind.
Most of us when asked to give two-thirds of S would do it
by taking one third and doubling it. So far was the Egyptian
from doing this that his sole means of finding one-third of a
quantity was to take two-thirds and then halve it.

But Battiscombe Gunn in his probing review of Peet’s edi-
tion of the Rhind Papyrus doubts Peet’s conclusions regarding the
use of a 2/3 table:*’
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That the Egyptian reckoner used tables for the purpose of
taking two-thirds of a number seems to me quite doubtful.
In the first place, no such tables are known before Byzantine
times; we might well have expected one in Rhind, if it were
necessary. Secondly, it was perfectly easy for a reckoner to
take two-thirds of any number below 100 in his head, by
splitting up the number in question into not more than three
parts, provided that he knew by heart (as no reckoner could
fail to do) the 2/3 of about a dozen numbers, say of 2, 3, 4,
5, 6, 15, 21, 30, 45, 60, 75, 90, of which all but 4 and 5 are
chosen for their obviousness. Thus, 2/3 of 87 is 2/3 of 75, 9
and 3; of 50, 2/3 of 45 and 5; of 28, 2/3 of 21, 6 and 1; and
so on. Anyone will find that with a few minutes’ practice he
can do this mentally with ease. In some cases there are
short cuts by subtraction; e.g,, 2/3 of 29 is not only 2/3 of
21, 6 and 2 but also 2/3 of 30 less 2/3 (of 1)....Taking two-
thirds of numbers higher than 100 by the same process is
only a matter of extending one’s repertory.

[Peet’s statement:] “His sole means of finding one-third of a
quantity was to take two-thirds [of it] and then halve it”....is
surely an overstatement. The fact that halving two-thirds is
his almost invariable method of arriving at one-third on pa-
per must not blind us to the other fact that the Egyptian, like
everyone else, had ultimately no way of arriving at two-
thirds but vig one-third. I think that he used this round-
about method for two reasons: first, that it was less trouble
to acquire facility in taking two-thirds of a number, and to
halve this when one-third was wanted, than to acquire the
practice of taking both two-thirds and one-third mentally;
secondly, that the method has this great advantage, that you
can easily check your mental arithmetic by adding the two-
thirds and the one-third together and seeing if the total
equals the number operated upon....

This criticism of Peet’s almost casual acceptance of the
Egyptian use of two-thirds tables appears to have some merit. But
if we consider the 2/3 and 1/3 entries in the table of Problem 61,
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discussed above and elsewhere in the Table of Two and in other
problems of the Rhind Papyrus that might have been drawn from
two-thirds and one-third tables, and the great convenience of hav-
ing such tables, we can understand Peet’s conclusion. Still it has to
be underlined, as Gunn notes, that no such complete tables for ei-
ther fractions or whole numbers are known before Byzantine times.
The reader may consult in our Fig. IV.30 the 2/3 table that appears
in the Greek in the first part of the Papyrus mathématique
d’Akhmim about 1000 years after the Rhind Papyrus that comprises
our Document IV.1. Obviously that table can hardly be used as
evidence for the existence of ancient Egyptian tables, despite the
very extensive Egyptian influence on the much later Greek work.
The inclusion in the Byzantine work not only of a table of two-
thirds but of the succeeding tables of multiplications by fractions
from 1/3 through 1/20 is nowhere matched in the early Egyptian
documents. Nevertheless, R.J. Gillings discusses how 2/3 tables of
fractions (as well as similar 1/3 and 1/2 tables of fractions) might
have been prepared, if we accept the possibility that such tables
were in existence at the time of the Rhind Papyrus.*' In recon-
structing these supposed Egyptian tables, Gillings laces together
individual line solutions largely found in the Rhind Papyrus. See
Fig. IV.31 below for Gillings’ reconstructed fractional tables in the
Egyptian manner.

Three more tables are found in Document IV.1. All three
are concerned with volumetric measures. The first one is numbered
Problem 47 in Document IV.] and comprises the Division of 100
Quadruple Heqat by 10 and its succeeding 9 multiples. The results
are given in quadruple heqat and its Horus-eye fractions (1/2, 1/4,
1/8, 1/16, 1/32, 1/64) and additional ro and fractions of ro. It will
be remembered from our earlier discussion of volumetric measures
that 1 ro = 1/320 heqat. Appropriately this table is found in the
section including problems concerning the contents of granaries and
their dimensions. The final tables from Document IV.1 are labeled
Problems 80 and 81. The first of the two simply gives successively
the values in henu of 1 hegat and then its Horus-eye fractions. The
second is more complex. It repeats first the equivalence in henu of
the simple Horus-eye fractions as given in the preceding table and
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then follows that with a series of sub-tables that give the values in
henu of decreasing sums of Horus-eye fractions plus some ro frac-
tions, with all but the first sub-table giving, in an extra column to
the right, the values of the Horus-eye sums in rubricated regular
fractions of a heqat.

We should also remind the reader once more of the table of
equalities expressing regular fractional sums that constitute Docu-
ment IV.5. The probable role they played in the composition of the
Table of Two has already been discussed in the preceding section.
Note that on the basis of the equalities given in lines 11, 13, 19 of
column 3 and lines 1-7 of column 4, Gillings poses a hypothetical G
rule, which was not in any Egyptian document so far as I know.
But still Gillings’ preliminary remarks concerning the G rule are of
some interest and I give them in brief:

An intelligent scribe would certainly notice a certain simple
relation existing between the three terms of these equalities
[mentioned above]. The expression of this relation is the G
rule. In modern mathematical terms we may state it as fol-
lows:

G rule: If one unit fraction is double another then their
sum is a different unit fraction if and only if the larger de-
nominator is divisible by 3. The quotient of the division is
the unit fraction of the sum.

But if such a rule were expressed by an Egyptian scribe, it
would have been much terser, probably something like this:

For adding 2 fractions, if one number is twice the other,
divide it by 3.

Line 11....[of column 3 of Document IV.5] illustrates the
G rule: 1/9 1/18 = 1/6.°

Gillings goes on to discuss possible extensions of the rule,
without of course claiming that either the rule or its extensions are
found in the ancient Egyptian mathematical literature; I leave Gil-
lings’ treatment of those extensions to the reader’s perusal.

Gillings also displays an extensive table of Two-Term
Equalities (in the form of 10 sub-tables), which is not present in
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Egyptian documents and which we again leave to the reader to ex-
plore.‘s Furthermore, despite his recognition of the fact that no
tables of squares or square roots have been found in the ancient
Egyptian documents, Gillings shows how such tables might have
been constructed and what they would look like.* Peet had earlier
said that “though distinguished by a special name, whose literal
meaning is not certain (apparently connected with the verb smy, to
‘pass by’) [squaring] was merely a special case of multiplication.”*’
I quote the pertinent parts of Problem 11 of Document IV.2, where
the squaring is indicated:

[Problem 11; see Fig. IV.6h]
[Col. XXI])

(Lin. 1] Example of reckoning the work of a man in
logs.

(Lin. 2] If someone says to you: “The work of a man in
logs;

[Lin. 3] the amount of his work is 100 logs

(Lin. 4] of 5 handbreadths section; but he has brought them
inlogs

{Lin. 5] of 4 handbreadths section.” You are to square
these 5 handbreadths. The result is

[Lin. 6] 25. You are to square the 4 handbreadths. The re-
sult is 16.
[Col. XX11]

[Lin. 1] Reckon with this 16 to get 25.

[Lin. 2] The result is 1+1/2+1/16 times. You are to take
this number 100 times.

(Lin. 3] The result is 156 1/4. Then you shall say to him,
“Behold,

(Lin, 4] this is the number of logs which he brought of 4
handbreadths section.

[Lin. 5] You will find that it is correct.”

As the reader of the Column XXII of this problem will
readily see, the scribe also was familiar with the use of a proportion
to solve his problems. As Peet notes,** “A modern boy handling
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this sum would be expected to state the proportion 16 : 25 = 100 :
x, and then either to multiply 100 by 25 and divide the result by 16,
or, like the Egyptian, to divide 25 by 16 and multiply the result by
100” [though the latter would not use the symbolic letter x of a
later algebra to express the unknown quantity, but merely call the
unknown “a quantity” or “a number”]. We shall have more to say
about proportions and the finding of unknown quantities in the next
section,

Returning to squares and square roots, and having noted
this example of finding squares and the special term for that multi-
plicative procedure, we should conclude this section with examples
of taking the square roots of numbers. Note those appearing in the
shorter fragment of the Berlin Papyrus 6619, i.e., Document [V 4,
with the conventional word “corner” (knbt) [i.e., “right angle” ({’_-‘ in
hieroglyphics) used for “square root™]:

{Lin. 1] ...You should extract the square root of 6 1/4..[i.e.,
212)

(Lin. 2] ...[Take] this 2 1/2, which remains....[You take]
{Lin. 3] ...[the square root of 400, i.e., 20]. Reckon [with 2
1/2 to obtain 20]...[The result is 8] times. [Multiply 8]

(Lin. 4] ...[by 2 and 1 1/2.] You should [now] say to him,
the square root[s]

{Lin. 5] ...[of the component square]s according to this cal-
culation (irt) [are 16]

[Lin. 6] ...[and] 12. You say it is found ...[i.e., correctly?]

In the longer fragment of that same document (line 6) we
find the square root of 1 1/2 + 1/16 (i.e., 25/16, when expressed as
a modern improper fraction in order to show the immediately evi-
dent squares involved in the expression whose square root it is).
The square root is correctly given as 1 1/4 (i.e., 5/4).

Aha Problems: The Finding of Unknown Quantities
Among the most intriguing arithmetical problems found in

the ancient Egyptian mathematical documents are those that seek to
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find an unknown quantity when a sum of it and one or more of its
parts is specified (this includes cases when the sum includes a nega-
tive term, or put more simply so as not to give it a too modern
sound, when one or more parts is subtracted from the unknown
quantity or from the unknown and some part of it). The obvious
reason for heightened interest in these problems is that the Egyptian
solutions of them anticipate (without of course actually using)
techniques that later came to the fore with the invention of algebra.
Let us first concentrate on the simple examples of such problems,
namely those given in Problems 24-27 of the Rhind Papyrus
(Document IV.1). Thg all involve the sum of an unknown quan-
tity lit. “heap,” i.e, ¥ &, 4% and some unit fraction of it (in fact,
1/7, 1/2, 1/4, or 1/5). In each case the unknown quantity is first
assumed to be equal to the denominator of the unit fraction, and a
false sum is calculated. Then by the use of the following proportion
the true quantity is determined, that is, by calculating thus: “as
many times as the calculated false sum must be multiplied to pro-
duce the true sum, so many times must the falsely assumed quantity
be multiplied in order to find the true unknown quantity.” Let us
present Problem 26 as an example:

A quantity with 1/4 of it added to it becomes 15.
[Assume 4.] [That is] multiply 4, making 1/4, namely 1, [so that
the] Total is 5 [proceeding in the usual manner:

\1 4
\1/4 1
Total:  S).

[As many times as S must be multiplied to make 15, so many times
4 must be multiplied to give the required number.]
Operate on 5 to find 15

\1 5
\2 10
Total: 3.
Multiply 3 times 4.
1 3
2 6
\4 12
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This becomes 12. [And find its 1/4:]

1 12
\1/4 3
Total: 15.

(Hence] the quantity is 12 and its 1/4 is 3 and the total is 15.
[This checks out since the sum agrees with what was originally
specified.]

As I have indicated in my version of Document IV.1, the
solutions of these simple problems, while recording only arithmeti-
cal calculations, seem to use a technique like that of false position,
that is first assuming a false value of the unknown, and then produc-
ing a corrected value by the above-noted use of a proportion. Now
obviously if we refuse to accept the designation of these arithmeti-
cal methods as algebraic techniques because we are not using letters
for known and unknown quantities and operating signs while ex-
pressing the problems as equations, and also if we are not generally
using the rules and equations found in the modern manipulation of
polynomial expressions and the factoring out of such expressions as
coeflicients of the unknown, then obviously we shall not find alge-
bra as such in the Egyptian documents. But some early historians
of mathematics would find in the Egyptian expression of equations
and in their solutions of problems involving unknowns many of the
nascent procedures that carry over into later algebra. Thus the
great German historian of mathematics Moritz Cantor would find
considerable identity between the Egyptian techniques and those of
the later algebra. And Problems 24, 28-29, and 31 are just the ex-
amples he identifies as “nothing else than what the algebra of today
calls equations of the first degree with one unknown.” And he
writes them all in the form of equations for comparison (these are
essentially the same as the equations I have written for them in
notes 17, 22, 29, and 31 of the Document IV.1, as the reader may
readily confirm). ** With this done, he then noted:

The essence of an equation is far less in its wording
(Wortlaui) than in its solution, and so in order to test the
justification for our comparison, we must look at how Ah-
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mes [the scribe of the Rhind Papyrus] carries out his Hau-
[i.e., Aha-]calculations. In doing so, he goes methodically
to work, adding together the terms which one would say
today stand to the left of the equal sign. To be sure, he
does it in two ways, in one so that the unit fractions to be
added stand next to each other as one single form, e.g.,
[Problem] No. 31: (1 2/3 1/2 1/7) x =33, in the other so that
the actual addition is carried out by reducing to a common
denominator, e.g., [Problem] No. 24: (8/7) x =10, No. 28:
(10/9) x = 10; No. 29: (20/27) x = 10. In the first method
mentioned, the coefficient of the unknown [expressed as 1
and some unit fractions] is divided into the given num-
ber....[in the Egyptian manner]; viz., in Nr. 31 one multiplies
1 2/3 1/2 1/7 until 33 results and finds the clearly tabled
value of the unknown as 14 1/4 1/97 1/56 1/679 1/776
1/194 1/388 [rearranged in descending order in the brack-
eted conclusion of Problem 31 of Document IV.1 below]....
The second case again opens up two possibilities: either one
solves the (a/b) x = C by first completing the division of
C/a and then multiplying this quotient by &. So it is in
[Problem] No. 24, where at first 8 is divided into 19 to ob-
tain 2 1/44 1/8, and then 7 times 2 1/4 1/8 produces 16 1/2
1/8 [the value of the unknown]. Or, [in the second possibil-
ity] one divides a/b into 1 and multiplies this quotient by C,
as is apparently done in Problems No. 28 and 29 [which see
in Document IV.1 below for details]).!®!

One of the most interesting critiques of Cantor’s views, as
well as those of Otto Neugebauer who followed him, was that of T.
Eric Peet, as he comments on the solution of Problem No. 26 [as
given above but without the bracketed additions I have included):*

The arithmetical operations here performed [in
Problem No. 26] are obvious. The number 4 is taken, its
quarter is added to it, giving 5. This 5 is divided into the
given 185, and the resulting 3 is multiplied by 4, giving the
correct answer 12.
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But what is the thought-process behind this? Cantor
thought that it was precisely that of the solution of the
equation (1 1/4) x =15; that in Step A 1 1/4 was reduced to
an improper fraction 5/4, in Step B the numerator 5 was di-
vided into 15, and in Step C the result multiplied by the de-
nominator 4.

This solution does not fit in with what we know of
the handling of fractional quantities by the Egyptians.” It
seems more probable that the method is that of trial The
number 4...is a trial number, chosen because its fourth part
involves no fractions. The result of performing the given
operation on the trial number is 5. But the given result is
15, and our trial number must, therefore, be multiplied by 3.
This is precisely the method which we should follow if told
to solve this sum without the use of the algebraic symbol x,
and it involves no mathematical principle save that of pro-
portion: if the trial number 4 gives a third of the required re-
sult then we must take three times 4.

As Peet goes on to say, there are other problems of this type
that are solved directly by division, as for example Problem 30 in
Document IV.1. It embraces a common Egyptian phrasing of
quantity problems, namely, “If the scribe says to you ‘What is the
quantity of which 2/3 and 1/10 will make 107" The answer, 13
1/23, is calculated by an indirect method that essentially involves
the multiplying of 2/3 and 1/10 successively by 1, 4, and 8 to get
13, with 1/30 still to be obtained to produce 10. It is found that the
additional multiplier 1/23 is needed to produce the remaining 1/30
and thus obtain the given sum 10, The answer is proved by multi-
plying the found unknown quantity, i.e., the quotient 13 1/23, by
2/3 and 1/10, to show that these multiplications produce the given
number 10.

Problems 28 and 29 in the Rhind Papyrus are supposed by
Chace in his translation to have been originally solved by false posi-
tion like Problems 24-27. But, he believes, the original solutions
that would have shown this were not included, and so he recon-
structs them (see Document IV.1, notes 27 and 29). Gillings, on
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the other hand, would classify them as “the very earliest examples
of Think of a number problems on record.”® The reader might find
this treatment of interest, but I forbear to discuss it here, since
Chace’s suggestions seem closer to Egyptian procedures.

Sometimes the false unknown assumed was “one”, as was
so often the case in later algebra. This assumption is made at the
beginning of Problem 37 of Document IV.1, as I have already noted
earlier when discussing the use of a common denominator in the
section on Unit Fractions and the Table of Two. The long mathe-
matical fragment in Berlin Papyrus 6619 (i.e., Document IV.4 be-
low), which solves the problem of dividing 100 square cubits into
two squares, one of whose sides is 3/4 of the other, also uses 1 as
the false assumption for the side of the first square. So this is com-
parable to using false position to solve the equation x* + y* = 100
where y = (3/4) x. As we have already seen in discussing squares
and square roots earlier, the sides of the two squares (i.e, the
square roots) were determined as 8 and 6. This then is a problem
whose solution represents that of a quadratic equation.

The foregoing are some of the principal examples of Aha
problems that seem to resemble, in a limited way, algebraic equa-
tions and their solutions. And even when worded in terms of prac-
tical measures, they seem to represent model problems of arithmetic
procedures, achieving a significant step toward general statements
that could be used to solve similar problems. Van der Waerden
says of the solutions of these Aha-calculations, that they “constitute
the climax of Egyptian arithmetic.”* One can comfortably accept
this opinion, while at the same time expressing great doubt (as Peet
did) that the key elements of algebra were present in the expression
and solution of the Aha problems. And so we can end this discus-
sion of Aha problems much as we began it. The literal symbols that
are the essence of algebra with some letters representing given
quantities and others representing unknown quantities, and still
other standard symbols indicating the arithmetical operations of
addition, subtraction, equality, and the practice by rules for operat-
ing on polynomials are simply not there,”® though, as I have just
said, the fact that the Egyptian authors seem to be presenting solu-
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tions that could be applied to other similar problems is a significant
step in the direction of the generality achieved by algebra.

Arithmetic and Geometric Progressions

Problems involving both of the simplest forms of progres-
sion were solved by the Egyptians. In a problem of the Kahun
Mathematical Fragments (Document IV.3, Cols. 11-12) we find a
straightforward procedure for finding a series of 10 numbers in
arithmetic progression when the sum is 100 and the common differ-
ence of terms is 1/2 1/3. The solution is given in two columns as
follows:

[Col. 11] [Col. 12]
\1 13112 100 [items to be divided among] 10 [men]
[in arithmetically decreasing amounts]
2 231/6 13 2/3 1/12
4 1283 12 2/3 1/6 V12
\8 3173 12 1/12
Total 32/3 1/12 11 1/6 1/12
10 1/3 1/12
9 13 1/6 1/12
8 23 1/12
7 23 1/61/12
7 112
6 1/6 1112.

Thanks to Sylvia Couchoud an important correction has
been made in the first line, namely “100[...] 10” items instead of the
“110” of the editor Griffith. Hence we do not need the tortuous
treatment that Gillings was forced to give the problem (see Docu-
ment IV.3, n. 1). Instead we see a straightforward application of
the arithmetical procedures that match the modern formula for the
highest term A, namely A = (8/n) + (n-1) (d/2), where S is the sum
of the terms (i.e., 100), n is the number of terms (10), and d is the
common difference between terms (2/3 + 1/6). Hence Col. 11,
starting with 72, i.e.,, 1/3 + 1/12, shows that when it is multiplied
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by n-1, i.e, 9, theresult is 3 2/3 1/12. In moving to Col. 12, ¥,
i.e., 100/10, becomes 10 and when added to the resuit of Col. 11,
the result gives us the highest term, 13 2/3 1/12. The succeeding
terms then are determined by successively subtracting the common
difference.

The similar Problem 64 of Document IV.1 is solved in the
same way as the Kahun problem. It asks what is the share of each
of 10 men if 10 heqat of barley is divided among them in such a
way that the excess of barley of each man over his predecessor is
1/8 heqat. The formulation $/7, which I used above, is called here
the “average share,” while n-/ and @/2 are given below in the prob-
lem as follows: “Take 1 from 10, and the remainder is 9 [as the
number of differences, i.e., 1 less than the number of men). Take
1/2 of the [common)] difference, i.e., ///6 [heqat]. Multiply this by
9 and the result is //2 1/16 [heqat]. Add this to the average share
[and this becomes 1 /2 [/16, which is the largest share]. Subtract
1/8 heqat for each man until you reach the last one.” He then lists
each share.

The final problem regarding an arithmetic series that should
be discussed is Problem 40 of Document IV.1, which I repeat here:

[Divide] 100 loaves among 5 men [in such a way that the shares
received will be in arithmetical progression and that] 1/7 of [the
sum of] the largest three shares is [equal to the sum of] the smallest
two. What is the [common)] excess [or difference of the shares]?

The procedure is as follows, [if we assume first that] the excess
[or difference] is 5 1/2. [Then the amounts that the five men re-
ceive are]

23,17 172, 12, 6 1/2, 1; total 60.
[As many times as is necessary to multiply 60 to make 100, so
many times must the terms noted above be multiplied to find the
correct terms of the series.]

\1 60
\2/3 40
Total: 1 2/3 100.

[Then] multiply [the above assumed terms] by 1 2/3 [as follows:]
23 itbecomes 381/3
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17 1/2 itbecomes 29 1/6
12 it becomes 20
61/2 itbecomes 102/31/6
1 itbecomes 12/3
Total: 60 it becomes 100.
[And so the common excess or difference between any two terms
is 9 1/6.]

It can readily be seen that this problem cannot be solved by
simply following the procedure of the preceding problems, for it is
evident that there will be two unknowns m 4 = Sn + (n-1) (d2),
namely, # and d.  Using algebraic technriques, we would put beside
the preceding equation the equation representing the additional
condition given in the enunciation of the problem (namely, 1/7 of
the sum of the three highest terms is equal to the two lowest
terms): [ + (h-d) + (h-2d))/7 = (h-3d) + (h-4d), and then solve the
simultaneous equations for /# and d. But this approach was appar-
ently not within the competence of the author. He immediately as-
sumes (using false position) that the constant excess of a term over
its predecessor is S 1/2. We do not know why he took that value. I
suspect that he rapidly went through a possible series of 5 terms
(those having the lowest term 1) with various trial excesses, first
with those consisting of integers and then with those made up of
mixed numbers consisting of integers plus 1/2, until he found the
one that produced the condition that 1/7 of the sum of the last three
highest terms equaled the sum of the two lowest terms. This turned
out to be the series 23, 17 1/2, 12, 6 1/2, 1, where the common ex-
cess was 5 1/2. He then computed the sum of that series as 60.
But one of the given conditions was that the true sum was 100
loaves. Accordingly, he used a proportion to find the true terms,
realizing that as many times as it is necessary to multiply the false
sum 60 to produce the true sum 100, so many times must each term
be multiplied to find the correct terms of the series. He thus found
that each term must be multiplied by 1 2/3 to produce the correct
terms. As I have suggested by the last bracketed statement, he
probably should have subtracted from any one term its predecessor
to obtain the true excess (9 1/6). One would have thought that it
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would have been easier to have produced the true common excess
first by multiplying the falsely assumed excess 5 1/2 by 1 2/3. Then
after determining the highest term as 38 1/8 he would have simply
had to subtract the true common excess 9 1/6 successively four
times to produce the remaining terms of the series instead of using
his more complicated process of multiplying the remaining terms of
the false series by 1 2/3.

We can also note that in determining the terms in the three
problems concerned with arithmetic series, the author (or authors)
always determined the highest term first and then the successive
lower terms by subtracting the common excess.

Now let us move on to geometric progressions. It should
be immediately evident to the reader who has read this far that the
simplest of all geometric series, namely that produced by doubling,
such as 1, 2, 4, 8..,, i.e.,, where the ratio of any term to its predeces-
sor term is 2, lay at the heart of the Egyptian system of multiplica-
tion and division, since one could easily make up any intervening
whole number multiplier by selectively adding these terms and
thereby produce a final product from the addition of the partial
products produced by all of the terms making up the total multi-
plier. We have also seen that another simple geometric series
helped to provide unit fractional multipliers: 1/2, 1/4, 1/8, .... This
series was composed of the reciprocals of the basic whole number
series just described. I note in passing that the first six terms of the
unit-fraction series were commonly used for fractions of a heqat,
and were represented by special Horus-eye fractional symbols
which are pictured in Fig. IV.3 (also consult Document IV.1, note
46).

We can proceed from these two basic geometric series to a
more complicated one in Problem 79 of the Rhind Papyrus
(Document IV.1). There we see that the Egyptian mathematician
was also interested in a geometric progression in which the ratio of
any term to its predecessor was 7 and its first term was 7:

[Sum a geometrical progression of five terms of which the
first term is 7 and the multiplier of each term is 7.]
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A house-inventory [shows how to find the multiplication by 7 to
find each term as a product in a series).

[Multiply 2801% by 7:)
1 2801
2 5602
4 11204
Total: 19607.

[The same procedure is followed to multiply each term in the fol-
lowing series of five numbers by 7, which then may be summed.]
houses 7

cats 49
mice 343
malt 2401 (corr. ex 2301)
heqat 16807
Total: 19607.

The lead column is evidently presented as a shorter way to
sum up a series of 5 terms of which the first is 7 and the ratio of
each term to its predecessor is also 7. It indicates that if we start
with 2801, then double it twice and add the products opposite the
multipliers 1, 2, 4, i.e., multiply it by 7 in the Egyptian way, we
shall find the sum 19607, which is confirmed as the sum of the
specified 5-term series in the second table by the normal method of
multiplying each term by 7 in order to find products that add up to
the sum of the series, i.e., 19607. The difficulty in this problem is
simply that we are not told how 2801 was selected as the number to
multiply by 7 in the first table. As Neugebauer pointed out,” if we
sum a series consisting of 1 + the first 4 terms of the 5-term series
under consideration, we would get a total of 2801, which, as the
first table of Problem 79 indicates, yields 19607 when multiplied by
7, a product equal to the sum of the 5-term series arrived at in the
second table of Problem 79. But this would not be much of a short
cut since one still would have to find the sum of the first 4 terms
before multiplying it by 7. Gillings suggests that it “is quite possible
that 2,801 had merely to be read off from a table...prepared long
before....”*® But, since we have no table of various geometric pro-
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gressions such as that proposed by Gillings, we have no documen-
tary support for this suggestion.

Pefsu Problems

Pefsu is the conventional term for the strength of bread or
beer made from a heqat of grain,; it is often translated as “the cook-
ing” or “the cooking ratio (or number).” Historically three forms of
the word were used, all originating in the verb f#/, ‘to cook’. The
first was probably féw, the second was pfiw, the third was psw (see
Document IV.1, nn, 103-04). We can express it in a general
mathematical expression as

Pefsu = (no. of loaves of bread or jugs of beer) / (no. of he-

qats of grain).

Hence the higher the pefsu number, the weaker the bread or
beer.

The pefsu number was widely quoted in offering lists like
that specified for the Feast of the Rising of Sothis quoted from the
Medinet Habu calendar in Volume 2 above (p. 271). Furthermore,
it was a particularly useful number to know in a barter economy, as
we shall see when we point to the number of problems devoted to
the exchange of bread and beer.

In our documents below there are twenty problems con-
cerned with pefsu, 10 in Document IV.1 and 10 in Document IV.2.
Let us look at the first of the 10 pefsu problems in the Rhind Papy-
rus (Problem 69 of Document IV.1), which determines the pefsu of
80 loaves of bread made from 3 1/2 heqat of meal:

3 1/2 heqat of meal is made into 80 loaves of bread. Make
known to me the amount of meal in each loaf and their pefsu (pfiw)
(i.e., cooking potency].

Multiply 3 1/2 so as to get 80.

1 3R
10 35
\20 70
\2 7
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\23 213

\1/21 1/6

\1/7 172.
The pefsu is 22 2/3 1/7 1/21.
[Proof:]

\1 2223 /7121
\2 451/3 1/4 1/14 1/28 1/42
\172 11173 1/14 1/42

[Total:  80).
[3 1/2 heqat makes 1120 ro, for]
\1 320
\2 640
\1/2 160

Total: 1120 ro.
[Hence] multiply 80 so as to get 1120.
The procedure is as follows:

1 80
\10 800
2 160
\ 4 320

Total: [14] 1120.
So the amount- of meal in one loaf [is 14 ro or] //32 heqat 4 ro.
[Proof, with the Horus-eye fractions given here in Italics:]

1 1/32 [heqat] 4 ro
2 1/16 1/64 [hegat] 3 ro
4 1/8 1/32 1/64 [heqat] 1 ro
8 1/4 1716 1/32 [hegat] 2 ro
\16 172 1/8 1/16 [heqat] 4 ro

32 1 1/4 1/8 1/64 [heqat] 3 ro
\64 2172 174 1/32 1/64 [heqat] 1 ro
The result is 3 1/2 heqat of meal [for the 80 loaves, as was
specified).

The first table evidently uses the pefsu ratio to find the
pefsu. In the Egyptian way, this is to find the total multiplier of 3
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1/2 that will yield 80. As the checks in the multiplier column show,
the partial multipliers that produce the partial products that sum at
80 are the ones that add up to 22 2/3 1/7 1/21, which is the pefsu.
Then there follows a table verifying the preceding division by mul-
tiplying 22 2/3 1/7 1/21 by 3 1/2 to get 80. In the next table the
scribe converts the 3 1/2 heqat of meal into ro by multiplying 320
(the number of ro in 1 heqat) by 3 1/2. The result is 1120 ro. Then
since there are 80 loaves, the scribe must then multiply 80 so as to
get 1120. The result is 14 and thus the amount of meal in 1 loaf is
14 ro, i.e., 1/32 heqat and 4 ro of meal [since //64 heqat = § ro].
Finally a calculating proof is given to show that the multiplication
of 1/32 heqat and 4 ro by 80 does indeed result in 3 1/2 heqat of
meal producing the 80 loaves. Problem 70, which follows the
problem we have just analyzed, is the same kind of problem, as the
reader will readily see. Another problem of this sort is Problem 20
of Document IV.2 and it need not be repeated here since it uses a
bread of given pefsu and a given number of loaves of bread to find
the quantity of grain. This allows us to move on to a somewhat
different problem concerning the pefsu of a diluted beer, namely,
Problem 71 of Document IV.1,

From 1 des-jug of beer 1/4 has been poured off and then
the jug has been refilled with water. What is the pefsu of the di-
luted beer?

Calculate the amount of besha (i.e., a kind of grain mixed
with fruit?) in 1 des of beer; the result is 7/2 [hegat] of besha. Take
away 1/4 of it, namely, //8 [heqat]. The remainder is //4 1/8
[heqat]. Multiply //4 1/8 [hegat] so as to get 1 [heqat]. The result
is 2 2/3, which is the pefsu [of the diluted beer).

It is evident that the pefsu of the original beer results from
the division of 1 by 1/2, namely, 2. Now if 1/4 of the beer is drawn
from the des-jug and the empty 1/4 of the des-jug is refilled with
water, the amount of besha has been reduced by 1/8, leaving //4
1/8 heqat (3/8 heqgat in modern notation). Thus the pefsu of the di-
luted beer is the result of the division of 1 by 1/4 1/8, or, as the
scribe says, by multiplying //4 1/8 so as to obtain 1.
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Some sort of similar diluted beer is found in 8 of the 10
pefsu problems in Document IV.2. It seems to be designated “1/2
1/4 malt-date beer” (see Problems 5, 8, 9, 12, 13, 16, 22, and 24),
but why this diluted malt-date beer is so designated is not clear (see
Document IV.2, note 7). It usually seems to be made with a
strength of pefsu 4. It is ordinarily compared to a stronger beer
(and thus one having a lower pefsu number) which is specified as
made with Upper Egyptian Grain and has a pefsu of 2. Problem 15
of this document is a simple one for finding the guantity of the
stronger beer made from Upper Egyptian Grain when the pefsu is
given as 2 and the quantity of grain is specified as 10 heqat, yield-
ing, of course, 10 1-des-jugs.

The next type of pefsu problems that demands attention
concerns the exchanging of loaves of bread of differing pefsu or the
exchanging of bread and beer. Problems 72-78 of Document IV.1
are all of that type. A simple example of the exchanging of one set
of loaves of bread having one pefsu with another set of loaves with
a different pefsu is Problem 73:

If it is said to you, “100 loaves of [pefsu] 10 are to be ex-
changed for loaves of [pefsu] 15. How many of the latter will there
be?”

Calculate the amount of wedyet-flour in these 100 loaves; it
is [10] heqat. Multiply 10 by 15. This is 150. Reply [then] that
this is [the number of loaves for] the exchange.

The procedure is as follows: 100 loaves of [pefsu] 10 would
be exchanged with 150 loaves of [pefsu] 15. [It takes] 10 heqgat.

The solution is by use of a simple 4-term proportion. Since
the amount of grain producing the two sets of loaves remains the
same (i.e., 10 heqat), the ratio of the number of the loaves (100) to
pefsu (10) of the first set must be the same as that of the unknown
number of loaves to pefsu (15) of the second set. Hence, as many
times as 10 must be multiplied to produce 100, namely 10, that
many times must 15 be multiplied to produce the number of loaves
of the second set. Hence the answer is 150 loaves. Problem 75 is
solved in precisely the same way and Problem 74 of the same
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document is only slightly different. Instead of exchanging the
whole 1000 loaves of bread with pefsu 5 for a single set of loaves
of bread with another pefsu, the scribe exchanges 1/2 for a bread
with pefsu 20 and 1/2 into a bread with pefsu 30. So he treats the
two exchanges as two simple problems to be solved in the conven-
tional way I have already outlined.

Problem 72 could also have been solved in precisely the
same way; but, though the scribe clearly was still using the basic
pefsu proportion, the actual solution was different. Its procedures
reflect rearrangement of the proportion by what would be called
alternation and subtraction in modern terms. First let me present
the problem as given:

Example of exchanging loaves for other loaves. You are
told that there are 100 loaves of [pefsu] 10 to be exchanged for
some number of loaves with [pefsu] 45. [How many of these will
there be?)]

Calculate the excess of 45 over 10; it is 35. Multiply 10 so
as to get 35; it is 3 1/2. Multiply 100 by 3 1/2; it is 350. Add 100
to it; it is 450. Say then that 100 loaves of [pefsu] 10 are ex-
changed for 450 loaves of [pefsu] 45, making in wedyet-flour 10

hegat.

The original proportion, which we might suppose he
thought of as 100/10 = unknown no./45, was apparently trans-
formed into 45/10 = unknown/100, by interchanging 45 and 100 in
the original proportion, for then he approximates the further proce-
dure of transforming the alternated proportion by subtraction: that
is, he subtracts 10 from 45, obtaining 35, which he divides by 10
(i.e., using normal Egyptian procedures, he multiplies 10 so as to
get 35), the quotient thus being found as 3 1/2. He then multiplies
100 by 3 1/2, getting 350. To the latter he adds 100 to find the
correct answer of 450 loaves. We can see this is equivalent to tak-
ing the arithmetical steps dictated by the proportion (45-10)/10 =
(unknown -100)/100, by completing the division of the left side,
and finding it to be 3 1/2, then multiplying that by the fourth term
from the right side (100), to get 350 on the left side, thus leaving
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the term (unknown - 100) on the right side, and then finally adding
the negative term (100) to the left side to get 450, which thus
equals the unknown number of loaves obtained by the author. This
whole procedure certainly shows how cleverly the scribe could
manipulate proportions.” I have purposely stated these terms in
numbers plus the word unknown so as not to prejudice the reader
to think exclusively in terms of algebraic symbolism.

In treating Problem 74 we saw how the scribe accomplished
the exchange of 1000 loaves of pefsu 5 produced from 200 heqat of
flour for two sets of loaves, each produced from 100 heqat of flour,
the first having a pefsu of 10 and the second a pefsu of 20. This
was done by separating the problem into two simple problems.
Now Problem 76 of the same document at first glance seems simi-
lar. However, the objective here is not to find the differing numbers
of loaves in each set derived from the same amount of flour but
rather to exchange 1000 loaves with pefsu 10 and thus made from
100 heqat of flour for 2 sets of bread of differing pefsu but having
the same number of loaves, one with pefsu 20 and the other with
pefsu 30, a very much more difficult problem for him. Algebraically
we can write the simple equation 1000/10 = (1/20 + 1/30)x, i.e.,
(x/12)=100, and so the solution is immediately evident as 1200, the
number of loaves in each set. But here is the solution given by the
scribe:

[One loaf of each kind will take] 1/20 and 1/30 [of a heqat].
[As parts of 30] 1/20 is 1 1/2 and 1/30 is 1. [Added,] the total is 2
1/2.
Multiply 2 1/2 so as to get 30:

1 212
V10 25
\2 ]
Total: 12,

[Therefore 2 1/2 is 1/12 of 30, so that 1/20 1/30 equals

1/12. Two loaves, one of each kind, will take 1/12 of a heqat and 1
heqat will make 12 loaves of each kind.]

The quantity of wedyet-flour in the 1000 loaves is 100 heqat.

Multiply 100 by 12; the result is 1200, which is [the number of
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loaves of each kind, i.e., for loaves of pefsu] 10 [and those of
pefsu] 20. [In summary,]

1000 loaves of [pefsu] 10, making 100 heqat of wedyet-flour
can be exchanged for

1200 loaves of [pefsu] 20, making 1/2 of 100 [heqat] and 10
[heqat, totaling 60 heqat of wedyet-flour], and

1200 loaves of [pefsu] 30, making 1/4 of 100 [heqat] and 15
[heqat, totaling 40 heqat of wedyet-flour].

Thus the scribe’s first step was to assume that there was 1
loaf of each kind of bread. There would thus take 1/20 + 1/30 he-
qat to produce these loaves, since the pefsu are respectively 20 and
30. He then clears the fractions by assuming, in the Egyptian way,
30 as a common denominator (as we have seen done before when
the scribe used red auxiliaries). Hence as parts of 30, he correctly
finds 1 1/2 and 1 respectively, or 2 1/2. Then he multiplies 2 1/2 so
as to obtain 30. The answer is 12, and the reciprocal of that is
1/12. Hence 2 loaves, one of each kind, will take 1/12 of a heqat
and 1 hegat would make 12 loaves of each kind of bread. But 100
heqat of flour produced the 1000 loaves. Thus if 100 is multiplied
by 12 we get 1200, the number of each set of loaves, as the author
correctly indicates in his concluding summary.

Another problem that seems to follow the reverse of the
procedure of Problem 76 is Problem 21 of Document IV.2. But, in
fact, this is not so. Let us first quote the actual statement of the
problems and its solution:

[Col. XXXVIII]

{Lin. 1] Example of calculating the mixing ($bn = $bn) of offering-
bread.

[Lin. 2] If someone says to you: “20 measured (?) [as Horus-eye
fraction] ~ (i.e., /8 heqat of grain) and 40 measured (?) as

[Horus-eye fraction]) > (i.e., 1/16 heqat of grain).”
[Lin. 3] You are to take 1/8 of 20; because the [Horus-eye sign]
is 1/8.

[Lin. 4] The result is 2 1/2. You are to take 1/16 of 40 because
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[Lin. 5] [the Horus-eye sign] > is 1/16. The result is 2 1/2. You
are to calculate

[Lin. 6] the total of these [fractions of 20 and 40]. The result is 5.
You are to calculate the total

[Col. XXXIX]

fLin. 1] of these [initial numbers 20 and 40]. The result is 60.
Then you divide 5 by 60, and

fLin. 2] the result is 1/12 (corr. ex 1/16). Behold, the mixture is
1/12 (corr. ex 1/16). You will find [that it is] correct.

It is by no means a clear text and the twice repeated fraction
1/16 of the last line has been corrected to 1/12. Peet’s interpreta-
tion of this problem makes sense and I now give it (with the obser-
vation that he loosely translates “heqat” as “galion”).%

M[oscow. Problem]21 shows how to find the “average” of
two lots of loaves, 20 containing each 1/8 gallon of flour,
and 40 containing each 1/16 gallon. The 20 are shown to
contain in all 2 1/2 gallons, and the 40 also 2 1/2 gallons.
The total flour is 5 gallons, and this, when made into 60
loaves (20 + 40), will allow 1/12 gallon for each loaf. It is
only when we reach the answer that we fully understand
what was meant by the “average”; the total number of
loaves is to remain the same, but all the loaves are to be of
the same size.

One should see, in connection with this interpretation,
Document IV.2, note 32, for Gillings’ suggestion of its possible re-
lation to the calculating of a harmonic mean, since 1/12 is the har-
monic mean between 1/8 and 1/16.

The final two pefsu problems in Document IV.1, nos. 77
and 78, involve respectively exchanging bread for beer and beer for
bread. They use the simple pefsu ratio in the solutions, as we can
illustrate by repeating Problem 78 here:
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Example of exchanging bread for beer. If it is said to
you: “100 loaves of bread of [pefsu] 10 are to be exchanged
for a quantity of beer of [pefsu] 2, [reason as follows to find
the quantity of beer).”

Reckon the amount of wedyet-flour in 100 loaves of
[pefsu] 10; it is 10 [heqat]. Multiply 10 by 2; it makes 20.
Say then that this [i.e., 20 des] is [the amount of beer it
takes for] the exchange.

We can briefly note here that the distribution of bread and
beer portions played a significant part in the domestic economy of
the priests and scribes of the Temple of Illahun. Ludwig Borchardt
published, translated, and wrongly analyzed a table of the distribu-
tion of 70 loaves of bread, 35 jugs of sd3-beer, and 115 1/2 jugs of
Bpnw-beer in 41 2/3 portions to various priests, scribes, and offi-
cials of the temple at Illahun®' (see Figs. IV.33-34 below; the 41 2/3
being the addition arrived at by multiplying each pair of items of the
first two columns which are under the “Teile?” heading). Hence,
each portion of bread (determined by dividing 70 by 41 2/3) was
approximated by the accountant as 1 2/3 for 1 2/3 1/75, that of the
first beer (determined by the division of 35 by 41 2/3) was ap-
proximated as 2/3 1/6, i.e., 1/2 of 1 2/3, for 2/3 1/6 1/150, while
that of the second beer (determined by the division of 115 1/2 by 41
2/3) was approximated by 2 2/3 1/10, for 2 2/3 1/10 1/250 1/750.

Ancient Egyptian Geometry: Areas

It is evident from the earlier sections of this chapter on
measurement that calculations regarding areas of land were among
the earliest and most widespread of mathematical activities. Peet is
correct in his judgment quoted over note three in the first section,
that the tomb of Metjen, of the late third and early fourth dynasty,
shows that the early Egyptians had knowledge of the correct de-
termination of the area of a rectangle of land, e.g., where the tomb
text says that “there has been conveyed to him (Metjen) in return
for compensation 200 arouras of arable land by many of the king’s
people...[and] a house 200 cubits long and 200 cubits wide,” which
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is an obvious reference to its rectangular, indeed square, floor plan
(see Vol. 1, p. 152). By the time of the mathematical papyri of the
Middle Kingdom, we find stated the express formula; Area = base x
altitude. A good example of this formulation is found in Problem 6
of Document IV .2, which I insert here along with the comments I
have added to that problem in the document below:

[Lin. 1] Example of calculating a rectangle.
[Lin. 2] If someone says to you: “A rectangle 12 setjat [in area]
[has] a breadth 1/2 1/4 of its length. [Calculate its area.]”
[Lin. 3] Calculate 1/2 1/4 to get 1. Theresultis 1 1/3.
[Lin. 4] Take this 12 setjat 1 1/3 times. The result is 16.
[Lin. 5] Calculate its square root. The result is 4 for its length;
[and] 1/2 1/4 of itis 3 for
[Lin. 6] the breadth. The correct procedure is as follows [see the
rectangle in line 6 of column VIII in Fig. IV .6¢c, marked with the
area of 12 in the center, the length of 4 above, and the breadth of 3
on the left side. The figure illustrates the problem and represents a
kind of proof. Then follows the calculation of the area, which
shows that 3 x 4 does indeed equal 12, the specified area):

\1 4

\2 8
[Total: 12].

As I suggest in my bracketed addition to the problem, the
diagram with breadth, length, and area all marked with numbers is
an important addition to the solution, Indeed it gives to the result a
kind of generality as a model for all such rectangular areas, i.e., it
reinforces the generality of the first line, The reader should also
consult Problem 49 of Document IV, 1 and its note 66.

There is no evidence of the use of a formula for a triangle in
the early tombs of the third millennium, but when it does appear in
the mathematical texts of the Middle Kingdom, it expresses the area
of the triangle in terms of a rectangle one side of which is equal to
half the base of the triangle and the adjacent side equal to the trian-
gle’s height, or so it seems to most students of Egyptian mathemat-
ics. Let us look first at Problem 51 of Document IV.1:
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Example of producing (i.e., calculating) [the area of] a
triangle (spdt) of land. If it is said to you: “What is the area of a
triangle of 10 khet on the mryt (most likely, the ‘height’ or
‘kathete’; less likely, the ‘side’) of it and 4 khet on the base of it?”

The Procedure is as follows:

1 400 [cubits, i.e., 4 khet]
172 200 [cubits, i.e., 2 khet]

1 1000 [cubits, i.e., 10 khet]
2 2000.
Its area is 20 setjat,

Take 1/2 of 4, namely, 2, in order to get [one side of] its
[equivalent] rectangle. Multiply 10 [the other side of the rectangle]
times 2; this is its area [i.e., the area of the rectangle and thus of the
triangle].

Since the Rhind Papyrus was the first Egyptian mathemati-
cal tract published and examined in detail, its above-quoted Prob-
lem 51 was the first Egyptian treatment of the area of a triangle
studied by historians of Egyptian mathematics. It was first believed
that the triangle as drawn (see Fig. IV.2kk, Plate 73) was a scalene
triangle but almost an isosceles triangle (which it was meant to be
but not drawn carefully), with one of the almost equal sides marked
on its outside as 10 khet and the base labeled on its outside as 4
khet, these two quantities being designated respectively in the text
as the mryt and the fpr and translated as “side” and “base.” Hence it
was thought that the area of the triangle was approximated as the
product of one-half its base and a side. Two scholars to hold this
view were the great editor Chace and, more recently, the subtle
critic Michel Guillemot (see Document IV .1, endnote 68). But, as I
say in that same note, I and many others (e.g., Gunn, Peet, Struve,
Gillings, and Couchoud) believe that the mryf should be translated
in a mathematical context, as “height” or at least “kathete” (the
“perpendicular” from the base to the apex of the triangle opposite
the base). Gunn, and later Peet as well, gave a satisfactory philol-
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ogical explanation for rendering mryt as “height” or “kathete” in its
alternate meaning as “quay” or a horizontal structure erected over
the sloping bank at the river’s edge (again see the endnote just
cited). The same problem with the same quantities expressed ap-
pears as Problem 4 in Document IV.2. In both cases, it seems to
me, the area of the triangle is expressed as a rectangle whose sides
are equal respectively to half-the-base and to the altitude.

Even more convincing evidence that the correct formulation
for the area of a triangle is understand by the Egyptians is found in
Problem 7 of Document IV .2:

[Lin, 1] Example of calculating a triangle.

[Lin. 2] If someone says to you: “[There is] a triangle with area of
20 [setjat] and ‘bank’ (idb, i.e., the ratio of height to base) of 2
127

[Lin. 3] Double the area. The result is 40, Take it 2 1/2 times.
[Lin. 4] The result is 100. Take the square root; the result is 10.
Call up 1 from 2 1/2.

[Lin. 5] The result is 1/3 1/15. Apply this to 10. The result is 4.
[Lin. 6] [Hence it is] 10 [khet] in the length (i.e., kathete) and 4
[khet] in its breadth.

The problem is to find the height and the base of a triangle
when the ratio of these two quantities is 2 1/2 : 1 and the area is
20. As I have noted in Document 1V.2, endnote 11, the solution of
this is similar in modern terms to solving two simultaneous equa-
tions: (1) Area = 1/2 base x altitude, and (2) height = 2 1/2 x base.
The first move is to double the area, which yields 40, Then we
multiply 40 by 2 1/2, yielding 100. Then the square root of 100 is
computed as 10, Now if we get 1 by finding a multiplier of 2 1/2,
that multiplier must be 1/3 1/15 (6/15 in modem parlance), and if
instead of 1 we get 10, as the conditions of the problem demand,
then we must multiply 1/3 1/15 by 10 and the answer is 4, the
length of the base, and so the height is 2 1/3 times the base, or 10.

Hence it is now obvious that the key step bearing on our
discussion of determining the scribe’s formula for the area of the
triangle was to double the given area of the triangle by constructing

n



ANCIENT EGYPTIAN SCIENCE

on the base a rectangle whose adjacent sides had to be the height
and the base of the triangle. Thus it is obvious to us graphically
that the area of the triangle underlying the solution of this problem
has to be one half of the base times the height (here called “length”
instead of “mryt”). 1 believe that the height was called “length”
in this and the similar Problem 17 of Document IV .2 not because it
was a right triangle tipped on its side, as Struve, Neugebauer, and
Guillemot held, but simply because it was tipped on its side, thus
making the kathete the longer measurement. Actually the triangle is
only seen clearly to be so tipped on its side in the text of Problem
17 (see the hieratic text in Fig. IV.6m). In this problem, however,
it was so crudely drawn that it cannot be affirmed to be a right tri-
angle. The height or kathete was perhaps also called the “length” in
these two problems because in that tipped position the longer side
of the equivalent rectangle was probably also called its “length.”
Hence some such simple graphic observations were in all
likelihood behind the discovery of the basic formula for the area of
the triangle. For if any scalene triangle ABC (see Fig. IV .4¢) is di-
vided into two right triangles ABD and ADC by drawing a perpen-
dicular AD from the apex to the base and each triangle after that
division is then doubled by constructing right triangle AEB equal to
triangle ABD on the left and right triangle AFC equal to triangle
ADC on the right so that each pair shares a common hypotenuse,
then the total rectangle BEFC formed by the four right triangles is
indeed double the initial triangle ABC. And so that initial triangle
would have had to be one half the final rectangle, i.e., half the
product of the latter's base BC times its height BH (= AD, the
height of the triangle ADC), If one tried to use either side AB or
AC to construct a rectangle on the base BC, it would be obvious by
inspection that the resulting rectangle would be more than double
triangle ABC since AB or AC would be longer than the height AD.
As i3 evident from my comments in the preceding paragraph, the
reader should also read carefully Problem 17 of Document IV.2,
Needless to say, if Problems 7 and 17 concern a right triangle, as
the editor of the Moscow Papyrus (Struve) believed (see the figures
of the triangle given in the hieroglyphic transcriptions of Problems 7
and 17 in Figs. IV.6¢ and IV.6m), the “length” or myrt would si-
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multaneously be the “height™ and a “side” of the initial triangle and
the correct formula for the area would be immediately evident in
the problem’s solution, and thus the preceding analysis would not
be relevant to Problems 7 and 17. It would, however, be com-
pletely relevant to Problem 51 of Document 1V.1, whether that tri-
angle was meant to be isosceles or scalene,

The question of the meaning of the word mryt arises once
more in Problem 52 of Document IV.1, which yields the formula
for a truncated triangle, i.e., a trapezoid, which I quote from the
text below:

Example of a truncated triangle (i.e., a trapezoid). If it is said
to you: “What is the area of a truncated triangle of land of 20 khet
in its height [or, side?)], 6 khet in its base, 4 khet in its truncating
line?”

Add its base to its truncating line; it makes 10. Take 1/2 of 10,
i.e, 5, in order to get [one side of] its [equivalent] rectangle. Mul-
tiply 20 [the other side of its rectangle] times 5; it makes 10 (10
ten-setjat). This is the area.

The procedure is as follows:

1 1000 [cubits, i.e., 10 khet]
1/2 500

\1 2000
2 4000

\4 8000

Total: 10,000 [cubit-strips, as in the preceding problem]).
Its area is 100 setjat (10 ten-setjat).

If we assume, as I have assumed in the translation and have
concluded in the previously discussed triangle problems, that mryt
is “height”, then the calculations given yield the correct formula for
the truncated triangle, namely A = [1/2 (truncating line + base line)
x height]. In this case we would certainly reject the alternate
translation of mryt as “side”. Peet’s comments concemning this
problem reinforce what I have said:*
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Here [in Problem 52)] we halve the sum of the parallel sides
“in order to get its rectangle” and multiply by the meryet.
Surely the idea of halving the sum of thr parallel sides can
only have come from a graphic solution such as that shown
in Fig. 4 [Author = my Fig. IV.35b], and with the truth so
clearly in front of their eyes it is not possible to believe that
the Egyptians were so silly as to multiply half this sum not
by the correct vertical height of the figure but by one of the
slant sides (assumed in this case to be equal),... and, if here,
so also in the case of the triangle.

I forbear to discuss here Problem 53 of Document IV.1
concerning an area composed of a triangle and a trapezoid because
of the chaotic state of the text, but the reader will find some effort
to straighten it out in the translation of the document below.

The last area problems needing discussion are those con-
cerned with the area of a circle, in many ways the most interesting
area problems solved by the Egyptians. Their interest lies in the
fact that the basic procedure involved quadrature, that is, finding a
rectangular figure (in fact, a square) equal to a circle. Thus the
Egyptians’ procedure of reducing circles to squares stands at the
head-of a long line of efforts of increasing sophistication to find the
areas and volumes of figures bounded by curved lines or curved
surfaces in terms of figures bounded by straight lines or plane sur-
faces. While not achieving the elegance of the Greeks (and above
all of Archimedes) their solution demands attention. This oft-
praised solution of the circle equated the area of a circle of diameter
9 with that of a square of side 8. To generalize it we can say that it
involved finding the area of a circle by subtracting 1/9 of its diame-
ter from the diameter and then squaring the remainder, which, as
has often been pointed out, achieves an approximation 256/81
(3.1605) for the modern symbol & as compared to the modern ap-
proximation 3.1416. To put it in another way, as Gillings does, the
Egyptian solution of the area of a circle of diameter 9 khet, i.e., the
square of 8 khet, was 64 setjat, while, if we used the modern ap-
proximation for &, the area would be approximately 63.6174 setjat,
“so that the Egyptian value is in error by less than 0.6 of one per-
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cent.”* Let me now give as an example of the Egyptian determina-
tion that is found in Problem 50 of Document IV.1:

Example of producing [the area of] a round field of diameter of

9 khet. What is the reckoning (/ir, rit, knowledge) of its area
Ghry?

Take away 1/9 of it (the diameter), namely 1; the remainder is 8.
Multiply 8 times 8; it makes 64. [Therefore,] the amount of it in
area is 64 setjat.

The procedure is as follows:

1 9
1/9 1;
this taken away leaves 8.
1 8
2 16
4 32
\8 64,

The amount of it in area is 64 setjat.

As Gillings notes,* the assumption by the author of a diame-
ter of 9 khet was “a matter of arithmetical convenience and not be-
cause it is a really practical problem,” since it results in an area of
over 40 acres and a “circumference of nearly a mile.” The proce-
dure given here is also found in the course of Problems 41 and 42
of Document IV.1 and of Problem 10 of Document IV.2, all de-
voted to volumes. The principal question raised by this good ap-
proximation is: How did it arise? Problem 48 of Document IV.1
may give us the answer:

[Compare the area of a circle (or, better, an octagon equal to
it?) and its circumscribing square.]

[Circle of diameter 9 (or, better, [Square of side 9]
an octagon = sq. of side 8)7]
1 8 setjat \1 9 setjat
2 16 setjat 2 18 setjat [cont.]
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4 32 setjat 4 36 setjat
\8 64 setjat \8 72 setjat
[Total: 64 setjat] Total: 81 setjat.

The bracketed additions (except for the altenative state-
ments which I have added in parentheses) are those added (without
brackets) by Chace to the two tables found in the hieratic text.
Thus he believed that the two tables which appeared as Problem 48
were simply a comparison of the calculations yielding the areas in
setjat of a circle of diameter 9 and the square of side 9 in which it
can be inscribed. But the difficulty of this explanation is that the
figure accompanying the tables shows a square with an inscribed
octagon and not with an inscribed circle. This octagon was crudely
drawn to be sure, thus producing unequal corners in the square (see
below Fig. IV 2ii, Problem 48), but it was possible, as Vogel pro-
poses, that it was meant to be a symmetrical and semiregular octa-
gon created by trisecting the sides of a square of side 9 and cutting
off the four triangular corners each equal to 9/2 (see Fig. IV.36
below). But whatever the structure of the octagon, I believe it
probable that the author assumed in Problem 48 that it was the in-
scribed octagon, itself being approximately equal to the circle of
diameter 9, that was being compared to the square of side 9. I re-
mark in note 64 of Problem 48 that this was the suggestion of
Vogel and later of Gillings. I briefly describe there Vogel's pro-
posal for a possible method, on the part of the scribe, to show that
the inscribed octagon and a square of side 8 are approximately
equal (63 setjat and 64 setjat; and see Fig. IV.36). But there is no
trace of this calculation in the Egyptian text (except for the poorly
drawn octagon inscribed in the square). Nor is there any trace of
Gillings’ suggested graphic method of assuming the approximate
equality of the octagon and square of side 8, but I shall give his
rather more detailed proposal here:*

By drawing a diagram as that shown in Fig. 13.6 [=Fig.
IV.37 below, upper left] on a piece of papyrus, the scribe
would conclude that the octagon was pretty closely equal in
area to the inscribed circle because some portions of the
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circle are outside the octagon and some portions of the oc-
tagon are outside the circle, and mere observations by the
naked eye suggest these are roughly equal. He then would
sketch a square of sides representing 9 khet, trisect the
sides, join the adjacent points of division, and then by
drawing all the lines necessary to actually see or visualize
each of the square khets or setats he can count these
squares in any way he pleases to find the number of them in
the octagon (see Figure 13.6 [Author = my Fig. IV.37, up-
per right]).

Now the Egyptian scribes found the areas of squares and
rectangles with ease. Then if the two top shaded corners of
4 1/2 setats (or square khets) each, which add to 9 setats,
were to replace the top row of 9 setats and if, similarly, the
two bottom shaded corners of 9 setats were to replace the
left-hand column of 9 setats, then the figure remaining [see
Fig. IV.37, lower figure], would be a square instead of an
octagon, the area of which the scribe can easily calculate,

The scribe could now properly conclude that the area of
the circle inscribed in a square of side 9 khets is very closely
equal to the area of a square of side 8 khets.

Therefore, in Problem 48 the scribe finds the total number
of setats in this square of eight rows of 8 setats, which he
gives as the area of a circle of diameter 9 khets. Of course
he certainly knows his method is not exact, because he has,
so to speak, cut off one setat twice—the one in the top lefi-
hand corner. But his method allows him to find a square
nearly equal to a circle, so that we can, “en caprice,” as it
were, credit A°h-mosé with being the first authentic circle-

Nowhere in this problem does the scribe give the direc-
tion, “Take away thou one-ninth of the diameter,” as he
does in the four other Problems 41, 42, 43, and 50, for this
is where he is showing how he discovered his now classical
rule.
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I hardly need point out to the reader that, though the scribe
may be hinting to the reader the nature of his graphical solution by
specifying that the quantities being multiplied in both tables are
setjat, i.e., collections of unit square khet, he is certainly not ex-
plicitly “showing how he discovered his now classical rule.” None
of the three diagrams in Fig. IV.37 is given in the papyrus or any-
where but in Gillings® fertile imagination; still a later drawing of an
ellipse and an approximately equal rectangle at the temple of Luxor
(see Fig. IV.42) gives some evidence of a graphic procedure like
that suggested by Gillings for the quadrature of the circle (compare
Borchardt’s suggestions in note 67, and particularly Couchoud’s
brief analysis there), The only thing we can be fairly sure of is that
the author of the Rhind Papyrus does assume in Problem 48, for
some unspecified reason, that the inscribed octagon is equal to a
square of side 8 and is as well equal to the inscribed circle of diame-
ter 9, which then becomes a geometrical illustration of his classical
rule for the measurement of a circle.

But Miche! Guillemot, in the article cited in note 66, rejects
the assumption made by Vogel and Gillings that the octagon in-
tended in Problem 48 is a symmetrical and semi-regular octagon of
the form they suggest (again see note 66). He proposes instead that
the inscribed octagon as figured in that Problem was drawn by cut-
ting off, from the circumscribed square of side 9, two diagonally
opposite corner triangles each equal to 9/2 and the two other cor-
ner triangles each equal to 8/2 (see Fig. IV.40). Such a proposed
octagon was in fact much closer to the octagon drawn in the papy-
rus, and furthermore its area is actually 64 rather than some ap-
proximation thereof, as was the case in the former explanations of
Vogel and Gillings. Even more important, he suggests that Prob-
lem 48 was not an effort to show how the Egyptians geometrically
discovered their rule that the area of a circle of diameter 9 was ap-
proximately equivalent to that of a square of side 8 but rather was
an attempt to show that the previously discovered rule satisfied
Egyptian knowledge of the geometry of the areas of squares and
rectangles. As for the prior discovery of the quadrature rule for the
circle, Guillemot speculates further that the previously discovered
quadrature rule was discovered through a calculating approxima-
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tion arising from the economic necessity of measuring the volumet-
ric content of a cylindrical granary. Such a volume was found al-
ways by multiplying the area of the circular disk or cover by the
granary's height. That approximation of the square equal to the disk
(i.e, a square with side 8 2/3 1/6 1/18, as determined in Problem
42), he claims, was one too excellent to have been obtained by a
“heuristic geometry,” or as the earlier authors I have quoted would
say, by a “graphic procedure.” Guillemot’s argument and conclu-
sions about the rule’s discovery (see Fig. IV.41 below) are pre-
sented with his usual care and imagination.

Incidentally, it is of interest that, of the four problems in
Document IV.1 giving the calculation of the area of a circle, three
use the diameter of 9 (perhaps because of its ease of trisection, as
Gillings notes in his suggested graphic solution), while the fourth
(Problem 42) gives a circle of diameter 10. But in all four cases the
procedure is so generalized that the first step is always specified as
taking 1/9 of the diameter. (In fact it was even mistakenly added to
Problem 43, as is suggested by Gillings’ version, the third of the
versions of this proposition which I have given in Document IV.1
below.) So it is evident that the area of a circle is one more case
(like those of the rectangle and triangle) where the scribe gave
specific illustrative problems, all of which were exemplifying a gen-
eral rule of calculating a specific kind of area.

In concluding our section on the quadrature of a circle, we
should note that there is some evidence of a similar interest by an-
cient Egyptians in the quadrature of an ellipse, as the result of the
discovery by Borchardt of an ellipse and an approximately equal
rectangle scratched on a wall of the temple at Luxor (Fig. IV.42),
although it is not certainly known whether the rectangle was given
as an aid to constructing the ellipse or as an effort to calculate its
area, and furthermore it is later (at least after the time of Ramesses
1), and perhaps much later, than the texts we are considering.®’
Still there is no doubt that the use of ordinate measures (i.e., simple
vertical straight lines) to help represent or to give the proper form
of arcs is evident in architectural sketches. One third-dynasty sketch
on a piece of limestone found in Saqqara, presumably from a
builder, fixes the form of an arc by designating on successive uni-
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formly spaced vertical ordinates their continually varying heights in
cubits, palms, and fingers (see Fig, IV.43).®

Volumes

The simplest kind of volumetric formula found in the
mathematical papyri was that for a cubical bin, one used for the
storing of grain, as is evident in Problem 44 of Document IV.1,
where the length, the breadth, and the height are each specified as
follows:

Example of reckoning [the volume of] a rectangular granary, its
length being 10, its breadth 10, and its height 10. What is the
amount of grain that goes into it?

Multiply 10 times 10; it makes 100. Multiply 100 times 10; it
makes 1000. Take 1/2 of 1000, namely 500, [and add it to 1000;]
it makes 1500, its contents in khar. Take 1/20 of 1500, it makes
75, its contents in quadruple heqat, namely, 7500 heqat of grain.

The reader will readily see that the scribe’s calculations fol-
low the formula ¥'=/ x b x h, each of which is given as 10 [cubits].
Actually, what is being determined first is the number of cubic cu-
bits in the granary by the above formula; then is found the number
of khar (this being calculated by multiplying the number of cubic
cubits by 1 1/2, since the khar is 2/3 the cubic cubit); then finally
the number of khar is converted into the so-called quadruple heqat
by taking 1/20 of the khar; and finally multiplying the number of
quadruple heqat by 100. In this way the author shows how to find
the number of heqat of grain that can be installed in the cubical
granary, The following problem (No. 45) gives the number of he-
qat of grain filling a cubical bin and determines the dimensions of
the bin. I am not interested at this point in the grain measurements
themselves since I have already spoken of the fractions and multi-
ples of heqat used in granary problems in the earlier section on
measurements in this chapter and since I shall give further informa-
tion in the notes to the various granary problems in Document IV.1
below. I have also noted earlier that the basic formula for a rectan-
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gular volume was also everywhere applied in Document IV.6 below
and I need not now present my later treatment of it that is found in
the course of giving that document. Hence the Egyptian determi-
nation of the volume of a parallelpiped was probably their initial and
most fundamental contribution in the field of solid geometry.

Though I have presented the rectangular faced volumes first
since rectangular formulas are probably earlier than those involving
circular measurements, I must point out that in Document IV.1 the
volumes of cylindrical granaries appear in Problems 41-43 and thus
before those concerning cubic rectangular granaries in Problems 44
and 45. Let us look at the first part of Problem 41, which describes
the calculation of the volume of cylindrical granary succinctly:

Example of making (i.c., calcnlating the volnme of a) ronnd
(i.e., cylindrical) granary of [diameter] 9 and [height] 10.

Take away 1/9 of 9, namely, |, the remainder is 8. Multiply 8
times 8; it makes 64. Multiply 64 times 10; it makes 640 [cubic]
cubits. Add 1/2 of it to it; it makes 960: the calcnlation of [the
content of] it in khar (h3rw). Take 1/20 of 960, namely, 48. This
is what goes into it in [the number of hundreds of] quadruple-
heqats, (4-hk30), [i.e.,] in grains, 4800 hegats.

Problem 42 is a quite similar problem and needs no elabora-
tion here. It suffices to say that in both problems the cylindrical
volumes are determined by finding the area of the circular base of
the cylinder as a square in the manner already described above in
the paragraphs on the area of a circle and multiplying that area by
the height of the cylinder. In these problems the author first finds
the volume of the cylindrical granaries in cubic cubits and then con-
verts them into khar (where the khar is a cubic unit 2/3 of that of
the cubic cubit) by multiplying the cubic cubits by 1 1/2, the khar
being subsequently converted into heqat of grain. But in the Kahun
fragment IV.3 (Document IV.3, Cols. 13-14) the volume of the
cylinder in khar is immediately found without first finding it in cubic
cubits:
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[What is the volume in khar of a cylindrical granary whose diame-
ter is 12 cubits and whose height is 8 cubits? As is evident from the
calculations below, the procedure is to add 1/3 of the diameter to
the diameter, multiply the total by itself; then multiply that result by
2/3 of the height, i.e., 5 1/3, to produce 1365 1/3 khar. I put the
operations of Col. 14 first.]

[Col. 14]
[\1 12)
23 8
\1/3 4
Total 16.
\ 1 16
\10 160
\'5 80
Total 256.

[Col. 13}
\1 256
2 512
\4 1024
\13 8513
Total 1365 1/3 [khar].

The equality of the two different ways of finding the volume
of the cylinder in khar can be demonstrated by expressing the differ-
ing procedures algebraically. In the method of Problems 41 and 42
of Document IV.1 the volume in khar is determined by the formula
V = (3/2)[d - d%)] and in the Kahun problem the pertinent for-
mula would be ¥= (2/3) & (d + d3)’. Both formulas reduce to ¥ =
(32/27) hd’. Note further that in the Kahun problem, with its
skeleton text of numbers, the volume in khar is not then converted
into heqat of grain as in the problems found in Document IV.1.
Incidentally, I shall not discuss here the corruption of the text of
Problem 43 presented as the first version of that problem in Docu-
ment IV.1 (with its difficulties mentioned there). But, like the Ka-
hun problem, it also seems to have had as its objective the determi-
nation of the volume of a cylinder in khar directly, despite its su-
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perfluous mention of taking 1/9 of the diameter from the diameter.
In fact, we should say here that, by following the procedure found
in the Kahun problem, the revision of Problem 43 suggested by Gil-
lings (the third version of that problem given in the translation of
Problem 43 below) seems to preserve considerably more of the
original text given in the Rhind Papyrus than does the revised sec-
ond version presented below in Document IV.1.

The most impressive of the volumetric problems given in the
Egyptian mathematical papyri is Problem 14 in Document 1V.2,
where the procedure for determining the volume of a truncated
square pyramid, i.e., the volume of frustum of a pyramid with a
square base, is given. I insert it here from Document IV.2 below:

[Col. XXVII]

[Lin. 1] Example of calcnlating a truncated [sqnare] pyramid.
[Lin. 2] If someone says to you: “A pyramid of 6 for the height
(Stwti)

[Lin. 3] by 4 on the base (i.e., the side of the lower square) by 2 on
the top (i.e., the side of the upper square).”

[Lin. 4] You are to square this 4; the result is 16.

[Lin. 5] You are to double 4 (i.e., multiply 4 by 2); the result is 8.
[Lin. 6] You are to square this 2; the result is 4.

[Col. XXVTII]

[Lin. 1] You are to add the 16

[Lin. 2] and the 8 and the 4,

[Lin. 3] the result is 28. You are to take

[Lin. 4] 173 of 6; the result is 2. You are to take 28 two times; the
result is 56.

[Lin. 5] Behold, [the volume] is 56. You will find [that this is]
correct.

[Col. XXIX]

[For the diagram given in this column with translated numerals
and their computation, see Fig. IV.10.]
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It is clear that the author has here used the correct formula-
tion for the volume of a truncated square pyramid (i.e., the arith-
metical steps specified by the problem’s text are precisely those one
would take when using the correct formula). That they should have
been able to discover such a formula is not surprising in view of
their great activity in building pyramids with the consequent need to
know the quantity of blocks required for their construction. But
how the ancient Egyptians derived the given procedure is not
known. Still the method of discovering the formula has been much
speculated on by modern historians of mathematics, as Peet and
Gillings indicate® and my quotations here in the text and in the
notes illustrate. Let us look at an ingenious solution proposed by
Gunn and Peet:™

By what means could the early Egyptians determine
the volume of a truncated pyramid?

How did the determination, when accomplished,
furnish the method of calculation which we find employed?

Now with one reserve, dealt with below, it is not a
difficult matter to ascertain the volume of a given truncated
pyramid by experimental means, namely by the fairly obvi-
ous method of division into parts and recombination of
these parts into simple solids, the sum of whose volumes
will give the volume of the frustum. Make a frustum of
manageable size and of some easily cut substance, and di-
vide it by four vertical cuts, each one coinciding, as to part
of its length, with one side of the upper surface, as shown in
Fig. 2 [Author: = my Fig. IV.9A, a], in which the frustum is
seen from the top, the thin lines representing the downward
cuts. The frustum will now have been cut into nine parts,
numbered 1 to 9 in...[Fig. IV.9A, a]; these parts, all of
which have the height of the frustum, fall into three classes:

(a) Part No. 1, the central portion, a rectangular
solid having the base equal to the upper surface of the frus-
tum (...[Fig. IV.9A, B)).



EGYPTIAN MATHEMATICS

(b) The four equal parts Nos. 2, 3, 4, 5, each a
wedge, in section a right-angled triangle, and having a base
one side of which is equal to a side of the upper surface of
the frustum, and the other side of which is equal to half the
difference between the sides of the lower and upper surfaces
of the frustum (...[Fig. 9A, 7).

(c) The four equal parts Nos. 6, 7, 8, 9. Each has
two vertical surfaces and two oblique ones; it terminates at
the top in a point, and its base, always square whatever be
the proportions of the frustum, has the side equal to half the
difference between the sides of the lower and upper surfaces
of the frustum (...[Fig. 9A, 8)).

The combinations necessary to group these solids
into larger and more regular ones become obvious after a
few moments’ manipulation. Taking any two of the wedges
Nos. 2, 3, 4, 5, and turning one of them upside down, we
find that they fit together into a rectangular solid having the
same height and base as one of the wedges (...[Fig. 9A, €]).
The other two wedges being similarly fitted together, and
joined to the first pair with all the wedges in single file, we
obtain a rectangular solid having a base double that of one
of the wedges and equal in height to these (...Fig. IV.9, 0).
To this we may now join part No. 1 [i.e., B}, in single file
with the wedges, for, whatever the proportions of the frus-
tum, any vertical face of the square-based part 1 will have
the same breadth as that of the vertical rectangular faces of
the wedges, and the heights of all the parts are equal. We
have now built up a rectangular solid equal in height to the
frustum, and standing on a base the sides of which are re-
spectively equal to the sides of the lower and upper surfaces
of the frustum (...[Fig. 9A, n]).

Turning now to the four parts Nos. 6, 7, 8, 9, we
find that if they are pushed together in the directions shown
by the arrows in...[Fig. IV.9A, a] until all their vertical
faces are hidden and in contact with each other, they consti-
tute a true pyramid having the height of the frustum, and a
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square base the side of which is equal to the difference be-
tween the sides of the lower and upper surfaces of the frus-
tum (...[Fig. IV.9A, 6])

By a method remote from those of pure geometry,
let us say by cutting up a lump of half-dry Nile mud with a
piece of stout thread, we have now converted a frustum into
a rectangular solid [i.e., a rectangular parallelepiped] and a
pyramid. To find the volume of the former is of course an
elementary matter, and provided that we also know how to
determine the volume of the pyramid (the reserve made
above [at the beginning]), we have only to add the two vol-
umes to get that of the frustum.

Another somewhat similar but more crisply presented line of
argument was given sometime later by B.L. van der Waerden, but
also with the same reserve, namely that the volume of a pyramid
was already known:”*

An outstanding accomplishment of the Egyptian mathe-
matics is found however in the entirely correct calculation
of the volume of the frustum of a pyramid with square base,
as found in the Moscow Papyrus (Plate 5a [duthor = my
Fig. IV .6k, Cols. XXVIII-XXIX]) by means of the formula

) V=(+ab+b*)eh/3,
where A is the height and a and b the sides of the lower and
upper base.

It is not to be supposed that such a formula can be found
empirically. It must have been obtained on the basis of a
theoretical argument; how? By dividing the frustum into 4
parts, viz., a rectangular parallelepiped, two [right] prisms
and a pyramid (see Fig. 5 [Author = my Fig. IV.9B, a)), one
finds, the volume of a pyramid being assumed as known, the
formula

(@) V=0bh+ b(a—b)h +(a—b) < h/3.

Neugebauer suspected that (1) came from (2) by means of

an algebraic transformation.™! But can one justify the as-
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sumption that the Egyptians were able to make such an al-
gebraic transformation? They were able to calculate with
concrete numbers, but not with general quantities. This
leads us to wonder whether in this case Egyptian arithmetic
was influenced by Babylonian algebra. Or should we sup-
pose that (1) was obtained from (2) by a geometric argu-
ment? One might imagine the following deduction,

For convenience, let us assume that one of the edges is
perpendicular to the base. The two prisms of Fig. S
(Author: = my Fig. IV.9B, a) are changed to rectangular
blocks of half the height; the pyramid is also transformed
into such a block, but having 1/3 of its original height (Fig.
6 [Author = my Fig. IV.9B, b]). Then the upper third of the
first of these blocks is removed and placed on top of the
second one (Fig. 7 [= my Fig. IV.9B, c]). The solid that is
obtained in this way can be divided into 3 horizontal layers,
each of which has the height 4/3; the lower one of these lay-
ers has a base equal to &°, the middle one has a base ab and
the upper one a base b

This derivation of the formula does not transcend
the level of Egyptian mathematics. But, I certainly do not
want to tell a fairy tale, and I definitely do not assert that the
Egyptians actually proceeded in this manner. There are in-
deed other possibilities. For example, Cassina [Periodico di
Matematica (4a seria) Vol. 22, pp. 1-29] has suggested an-
other derivation of the formula for the special case
[appearing in the Moscow Papyrus] (and this indeed is the
only case dealt with in the papyrus) in which the area (!
should be side) of the upper base is one half of that of the
lower base. Moreover, we should not a priori eliminate a
possible effect of Babylonian algebra.

Whichever one of these hypotheses is adopted, we
must suppose that the Egyptians knew how to determine the
volume of a pyramid. [Author: Note that I have corrected
the common misspellings “frustrum” and “parallelopiped”
used in the long passage just quoted.]
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One further point worth mentioning in this argument is that
van der Waerden has for the sake of convenience started with a
frustum one of the edges of which is perpendicular to the base (and
although one could perhaps interpret the figure given in the hieratic
text of Problem No. 14 as being the frustum of such a pyramid, the
general understanding of the relevant pyramid here and elsewhere is
of the ordinary pyramid found constructed in Egypt, and is certainly
so of the pyramids whose slopes are found in Problems 56-59 of
Document IV.] discussed below). At any rate, using a frustum of a
pyramid with a perpendicular edge allows van der Waerden to
simplify his argument by dealing with two wedges (not four), one
central parallelepiped, and one pyramid. Also both these arguments
(those of Gunn-Peet and van der Waerden) seem to grant that the
general formula appearing in Problem 14 (van der Waerden’s for-
mula No. 1) was not derived by means of algebraic transformation
from formula No. 2, as Neugebauer suspected. Rather they assume
that some kind of geometrical, that is graphic, transformation was
employed. But the crucial difficulty in all of such graphical solutions
is that they depend on prior knowledge by the Egyptian mathema-
tician of the formula for the volume of a pyramid, namely ¥ = 1/3
times the product of the base and the altitude. Gunn and Peet faced
that 7g)roblem, though their graphic solution of it is not too convinc-

ing:

Now there is no direct evidence, from the mathe-
matical documents or other sources, that the Egyptians
knew the very simple calculation required to determine the
volume of a pyramid; yet it is almost inconceivable that they
did not. Being accustomed, from the Third Dynasty on-
wards, to construct large pyramids in stone and brick, and it
being of the greatest importance to know in advance the
amount of material, and hence of labour and time, that these
buildings would require, they will certainly have made every
effort in their power to solve the problem. Here again ex-
periment yields the secret. If, again with Nile mud and a
thread, we attempt to find it by dividing a model pyramid
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into parts and combining these, no useful results follow, be-
cause there will always be polyhedra which refuse to make
up into simpler solids. But the obvious way to make a small
pyramid of some fairly soft substance is to take a rectangu-
lar solid on a square base (parallelepiped) and with two
slanting downward cuts passing through the middle line 0O’
of its upper surface to separate it into a central triangular
prism with a wedge on each side of it, as shown in ...[Fig.
IV.9C, a]. Next, without removing the wedges from the
prism, make two similar cuts passing through the XX” at
right angles to OO" The result will be to divide the whole
solid into nine parts. In the centre will remain a pyramid,
visible in...[Fig. IV.9C, b], on a square base, and of the
same height as the original parallelepiped. Resting against
its four sides we shall have four equal tetrahedra, two of
which are shown detached in...[Fig. IV.9C, b]. Between
each pair of these tetrahedra is another tetrahedron (e.g.,
OPX'B‘B in..[Fig. IV.9C, a]) whose vertex B is one of the
corner points of the square base of the original figure,
whose base is a square OPXB’, forming a quarter of the
upper surface of the parallelepiped, and one of whose edges
BB’is at right angles to this base. The position and shape of
these last four tetrahedra can easily be imagined
from....[Fig. IV.9C, c], where they have been removed,
leaving only the central pyramid with the other four tetrahe-
dra attached to its sides.

Now it is obvious that those four corner tetrahedra,
OPX'B’B, etc., can be fitted together (exactly in the manner
of those which we obtained by cutting up a frustum of a
pyramid, p. 180 [and quoted above over note 68]) to form a
pyramid precisely similar and equal to that left in the centre
of the parallelepiped. We have thus dissected our paral-
lelepiped into two equal and similar pyramids and four tet-
rahedra. This result may well have suggested to the Egyp-
tian the possibility of some constant relation between the
volumes of the pyramids and that of the parallelepiped from
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which they were cut, and since the four remaining tetrahe-
dra cannot be combined into any simpler solid we may sup-
pose that he had recourse to weighing, which would at once
reveal the fact that the four tetrahedra are together equal to
each of the two pyramids. Consequently each pyramid is
one-third of the original paralielepiped in volume, or V =
(height x base) / 3.

The authors then go on to recount a further simple experi-
mental way suggested by R. Engelbach that the formula for the
frustum of the pyramid given in Problem 14 might have been dis-
covered, which I suggest that the reader might pursue on his
own.™ I also recommend that the reader read the critique of the
Gunn and Peet article made by K. Vogel in the same journal, ™

We mentioned above that the Egyptians were interested in
problems conceming pyramids because of their great activity in
building them. Among such problems were those concerning their
slopes. They would have had to know the desired slope of a pyra-
mid before building it. Problems 56-59 found in Document IV.1
are concerned with the slopes of pyramids as determined by their
vertical height and the length of a side of the square base.

In illustration of this determination of the slope or skd
(always transcribed as “seqed™ rather than “seked” in my volume),
let us quote the first of these problems, Problem 56 from Document
IV.1 below:

Example of reckoning a pyramid (mr) whose base-side (wh3-tbt)
is 360 [cubits] and whose altitude (pr-m-w¥) is 250 [cubits]. Cause
that I know (i.e, calculate) its seqed (i.e., slope). [See Fig,
IV.2mm, Plate 78.]

Take 1/2 of 360 and the result is 180. Multiply 250 so as to find
180, It makes 1/2 1/5 1/50 of a cubit, A cubit is 7 palms. Multiply
7 as follows:

1 7

172 312

1/5 11/31/15
1/50 1/10 1/25.
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The seqed is 5 1/25 palms.

If we use the figure of pyramid on a square base redrawn
by Peet [duthor. see my Fig IV.9F], the slope or seqed is, of
course, determined by the ratio of one half of a side of the base to
the altitude of the pyramid, namely, the slope of angle GFD. The
slope is what we would call today the cotangent of that angle, i.e.,
the ratio GF/GD in Peet’s figure. Of course, the slope was not only
crucial for the construction of pyramids, as noted here, but also for
the construction of water clocks shaped as sections of inverted
cones (see Volume 2 of my work, pp. 65-77 and passim). We
should note in this connection that Problem 60 of Document IV.1,
which is said to be the determination of the seqed of a pillar or col-
umn (iwn) may well be in fact the finding of the slope of a cone (see
Document IV. 1, notes 88-90):

[In] a pillar (iwn) [or perhaps a cone?] with a base-side (satt) [or
perhaps a diameter?] of 15 cubits and a height of 30 [cubits], what
is its seqed? [See Fig. IV.200, Plate 82.]

Take 1/2 of 15; it is 7 1/2. Operate on 30 so as to get 7 1/2. The
result is 1/4, which is the seqed.

One piece of evidence that seems to favor the interpretation
of this problem as referring to the slope of a cone is the fact that the
diagram accompanying the hieratic text (Fig. IV.200, Plate 82) ap-
pears to be that of a cone. However, iwn ordinarily is a column or
pillar.

There is one final problem that appears to be in the realm of
solid geometry, being concerned with the surface of a “basket.” It
is Problem 10 of Document IV.2 and has caused considerable dis-
cussion, for the editor of the Moscow Papyrus, W.W, Struve, be-
lieved it to be the correct solution for the area of a hemisphere. Let
me first quote the text of that problem as reconstructed by Struve:

[Col. XVHI] fcont.]

9
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p—g

[Lin. 1] Example of calculating a basket (= |, nbr) [assumed by
Struve as hemispheric in shape; see Fig. IV.8]

[Lin. 2] If someone says to you; “A basket with a mouth opening
[Lin. 3] of 4 1/2 (i.e., a diameter of this size) in good condition
(‘d). oh

[Lin. 4] let me know its [surface] area (3h1).”

[Lin. 5] [First] calculate 1/9 of 9, since the basket is

[Lin. 6] 1/2 of an egg-shell (? inr?). The resultis 1.

[Col. XIX]

[Lin. 1] Calculate the remainder as 8.

[Lin. 2] Calculate 1/9 of 8.

[Lin. 3] The result is 2/3 1/6 1/18. Cal-

[Lin. 4] culate the remainder from these 8 after

[Lin. 5] taking away those 2/3 1/6 1/18. The result is 7 1/9.

[Col. XX]

[Lin. 1] Reckon with 7 1/9 four and one-half times.
[Lin. 2] The result is 32. Behold, this is its area,
[Lin. 3] You will find that it is correct.

For the most part the judgment of historians of mathematics
has gone against Struve’s interpretation, all of the critics being so
conscious of the brilliance of the later Greek discoveries in the
realm of spherical geometry that they were apparently reluctant to
accept any significant role in those discoveries by Egyptian calcula-
tors. Peet’s critical philological rejection of Struve’s text, which I
have given below in note 18 of Document IV .2, seems to have rein-
forced the opinion of the doubters. On the other hand, not all of
Peet’s textual criticisms seem to me to be entirely just, particularly
those connected with Peet’s convenient additions to the text that
are not all supported in the hieratic text, as I said in the same foot-
note cited above. While Peet believed he had overtummed Struve’s
interpretation, his suggested reinterpretations are far from sure, as I
further remark in note 19 of Document IV.2. Of his own two dif-
fering interpretations, only the one which interprets the problem as

92



EGYPTIAN MATHEMATICS

finding the surface area of a half cylinder (i.e., a cylinder split verti-
cally) has some plausibility, and thus I have included it as a second
version of Problem 10 in the text of Document IV.2 below. But as
we show toward the end of note 18 of Document IV.2, R.J. Gil-
lings, while not being dogmatic, is so struck by what he thinks is the
conformity of the Egyptian procedure with the correct formula for
the surface of a hemisphere, that he is inclined to accept Struve’s
conclusions, a position I sympathize with. However, he makes no
effort to answer Peet’s philological criticism of Struve’s interpreta-
tion. For a comparison of the differing interpretations of Struve
and Peet, see my Fig. IV.38 taken from Neugebauer’'s Vorlesungen
tiber Geschichte der Antiken mathematischen Wissenschaften,™
where their respective corrections of the text are given within
square brackets, Neugebauer also suggests there (see note 76) that
the problem may pertain to the area of a dome-shaped granary.

Conclusion

I have attempted to illustrate and analyze the main features
and procedures of ancient Egyptian mathematics in the foregoing
pages. The reader will no doubt have been impressed by the pre-
vailing dominance of calculation everywhere in the ancient papyri,
calculation that was often brilliantly executed within the limits of
their arithmetical and notational conventions. The dominance of
calculation is true of the problems whether they refer to the simple
arithmetical procedures or whether they are concerned with plane
or solid geometry. Such arithmetical practices, whether or not they
are presented as specific examples of what were common-place and
apparently general procedures (which they were for the most part in
the mathematical papyri), show the intimate connection throughout
between the problems presented and the needs and techniques of
measurement. Lurking behind the calculations that exemplify the
apparently general procedures, even if they are invisible, may have
been graphic procedures, perhaps like those suggested above in the
sections on geometry. These graphic procedures perhaps performed
the same function as the algebraic transformations that some mod-
em historians of mathematics thought they detected in the Egyptian
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solutions of geometric problems. Once achieved in this realm of
mathematics, similar arithmetical procedures involving manipulation
of the equations found in Aha problems and in many other of the
numerical problems may well have been adopted and even become
common place.

The use of graphic techniques to find the general procedures
so often implied in the mathematical problems we have discussed in
some detail in this chapter, despite Guillemot’s doubts, seems ap-
propriate, one may almost say analogically confirmed, by the
manifold use of scaled grids (a geometrical graphic tool itself) to
transform the standard measurements of body parts into a regular
canon of proportions for the creation of the artistic representations,
the paintings and sculptures of human figures, found everywhere in
the tombs and temples of Ancient Egypt.

In the next and concluding volume of my work, I shall at-
tempt to examine this canon and its formation for the light it throws
on a general investigation of Egyptian modes of viewing and depict-
ing nature,”

I have been rather cautious about problems that imply gen-
erality, using such adjectives as “invisible” or “implied.” Neverthe-
less, I believe firmly that generality is what the mathematical papyri
are all about. There simply is no doubt that the authors intended
for the readers who wished to compute problems of the same na-
ture as those given in the papyni to tumn to these problems in the
papyri even though their data differed. While general rules are or-
dinarily not written out, we must remember that the so-called
Problem 61B of Document IV.] was in fact a general rule for tak-
ing 2/3 of an unitary odd fraction, i.e., of the reciprocal of an odd
number; take the reciprocals of the products of 2 times the odd
number and of 6 times the odd number, and these two unit fractions
together give the desired solution. Also the reader should note the
author’s conclusion to Problem 66 of Document IV.1: “You shall
proceed in this way [given above] in any example like this.” Con-
sideration of the generality of Egyptian mathematics has led to
rather inconclusive discussions of how close to modem “science”
(by which the historians seem to mean modem “mathematics™) the
Egyptians came.”™ I have not always escaped such a temptation in
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these pages, but my principal purpose in this chapter, and indeed in
the documents below, has been to delineate such similarities and
divergencies as existed. Most of all, I have attempted to show in
sufficient detail the actual mathematical procedures followed by
these early mathematicians as they went about measuring and com-
puting to help satisfy their manifold needs.

Notes to Chapter Four

! For mention of the Egyptian “rope-stretchers” or surveyors, see Democritus’
claim that no one surpasses him “in the construction of lines with proofs, not
even the rope-stretchers (harpedonaptai) among the Egyptians.” See B.L. van
der Waerden, Science Awakening (Groningen, 1961), p. 15. As 1 note in the
text below, the surveyors are often mentioned as laying out temples in the Early
Annals. One of the carliest embracive treatments of length measurement in
Egypt and elsewhere in the anciem world was thal composed by C.R. Lepsius,
Die Langenmasse der Alten (Berlin, 1884). This book was an outcome of Lep-
sius’ carlier study of the Egyptian cubil published in 1866 (see note 4 below).
His Die Langenmasse is still of interest to the studeni of ancient measurement,
and i1 will surely repay the reader who consults it. See the recem succinct ac-
count on the the metrological units found in third millennium B.C. documents
by James Ritter, “Metrology and the Prehistory of Fractions,” Histoire de frac-
tions, fractions d’histoire, coordonné par P, Benoil et al. (Basel, Boston, and
Belin, 1992), Chapt. 1, pp. 25-34.

YHerodotus, The Histories, translated by Aubrey de Sélincourt (Penguin Books,
1954), Book I1, Sect. 109, pp. 141-42. The king to whom Herodotus attributed
this act was a Sesostris, who was, however, misplaced before the pyramid
builders of the fourth dynasty. Indeed his account of the deeds of this Sesostris
was a mélange of the activities of the various kings that belonged to the twelfth

dynpasty.

3T.E. Peet, The Rhind Mathematical Papyrus (London, 1923), pp. 9-10.

“ The section on measures has been based on the documents that accompany
this chapter and several important discussions: C.R. Lepsius, Die altagyptische
Elle und ihre Eintheilung in Philologische und historische Abhandlungen der
koniglichen Akademie der Wissenschafien zu Berlin. Aus dem Jahre 1865
{(Betlin, 1866); pp. 1-63, 64*-64**** and § Tafeln; F. L. Griffith, “Notes on
Egyptian Weights and Measures,” PBSA, Vol. 14 (1892), pp. 403-50, Vol. 15
(1893), pp. 301-16; Peet, op. cit. in the preceding note, pp. 24-26; A.B. Chace,
et al., The Rhind Mathematical Papyrus, Vol. 1 (Oberlin, Ohio, 1927), pp. 31-
34; Gardiner, Egyptian Grammar, pp. 197-200; and the exceedingly useful ar-
ticles of W. Helck and S. Vieming on “Masse und Gewichte,” Lexikon der
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Agyprologie, Vol. 3 (Wiesbaden, 1980), cc. 1199-1214, the article of Helck's
covering measures in Pharaonic times (cc. 1199-1209) and that of Vleming's
Demotic texts in Ptolemaic Times (cc. 1209-1214). Copious citations are given
in the last two articles.

% For other estimates, see the measurement 52.5 cm. quoted in the article by
Helck given in note 4, Vol. 3, c. 1200, and the discussion in the work of Gil-
lings, Mathematics in the Time of the Pharaohs, p. 207, n.*. As Griffith ob-
serves in op. cit. in note 4 above, p. 406: “According to Mr. Petrie, the cubil
shown in the marvelously accurate work of the Great Pyramid is 20.62 inches,
and the average of the royal cubil on the rods is 20.65.” Sece the detailed dis-
cussion of linear measures in W.M.F. Petrie, Ancient Weights and Measures
(Warminster, Wiltshire, England, 1926), pp. 38-41. Also see note 8 below.

© As reworked in English by Griffith, op. cit. in note 4, p. 404, from Lepsius,
op. cit. in note 4, pp. 43-44.

"'The description quoted here is from the Museum of Fine Arts, Egypt's Golden
Age: Catalogue of the Exhibition (Boston, 1982), the catalogue of an Exhibi-
tion al the museum, Feb. 3-May 2, 1982, photograph no. 30, with accompany-
ing description, bibliography, and literature.

® Sce Petrie, Wisdom of the Egyptians (London, 1940), p. 71: “The half diago-
nal of this [royal cubil of 20.6 ins.] was the remen, a second unit of 14.6 ins.,
which was divided in 20 digits of .73 [ins.]. Thus, by the use of the diagonal,
the half of any square area could be readily formed and defined. Thai this was
fully recognized is shown by the half of the area of 100 x 100 cubits being also
called remen in land measure.... The remen means an arm, or branch of a tree,
and agrees with the fore-arm down 1o the clenched knuckles, still a favourite
mode of measuring in Egypt.” In the same work, p. 10, he speaks of the 20.62
cubil (also see n. 5).

® Griffith, op. cit. in note 4 above, p. 404. See also my next note.

°W.C. Hayes, The Scepter of Egypt, Part 1 (Greenwich, Conn., 1959), pp.
412-13. These fragments mentioned by Hayes and other cubit-rods were the
object of some interesting remarks by G. Sarton, “On 8 curious subdivision of
the Egyptian cubit,” Isis, Vol. 25 (1936), pp. 399-402. He says (pp. 401-02)
concerning the division of the digil into 16 parts in the examples of cubil-rods
given by Lepsius and Schiaparelli: “l1 should be noted thai as the length of a
digi is less than 2 cm., subdivision into sixteen parts reaches almost the practi-
cal limi1 of visibility.

“Whal may have been the purpose of thai strange subdivision? Why
was il necessary to have ready scales in fractions of a digit-from the half 10 the
sixteenth? This was probably connected with the Egyptian exclusive interest in
fractions of the type 1/n. [see the Table of Two in my Document IV.1 below].
There rulers made i1 possible to determine the actual length indicated by such
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an expression as one cubit plus one fifth, one eighth and one fourteenth, yet the
same purpose might have been attained in a simpler manner.

“The use of such rulers for the graphical solutions of arithmetical
problems cannot be countenanced, for the divisions were not precise enough.
Indeed as Lepsius remarked (1866, 18) the subdivisions of the cubit are some-
times unequal and the digits have not all the same length. In the schematic
example on his plate 1 [Author = my Fig. IV.24 (Tafel 1)), the first sixteen dig-
its are 18,75 mm. long, the eight following (17th to 24th), 17.9 mm. long, the
last four, 21.87 mm. long. Indeced various characteristics of the cubits pre-
served m our muscums suggest that they were objects meant for ceremonial
rather than practical uee. For example, in the beautiful {golden] cubit of the
muscum of Torino [sce below), each digit is associated with a god whose name
is written above it. Moreover various cubits being made of stone were oo
heavy and fragile for convenience.”

Let me quote at some length from E. Schiaparelli’s description of the
golden cubit rod of Cha [or Kha), La tomba intatta dell‘architetto Cha nella
necropoli di Tebe (Torino, 1927), pp. 168-172; “Fra gli oggetti rinvenuti nella
tomba di Cha ve ne sono alcuni che, a giudicare dalle iscrizioni incise o scritte
sui medesimi, si deve credere che sieno stati a lui donati o dal Faraone o da
persone amiche. Tali sono un cubito di lamina d’oro, due vasi di bronzo....

“I1 cubito di lamina d’oro & oggetto di grandissimo pregio (Figg. 155 ¢
156 [=Figs. IV.27b and IV.27¢ below]). Noi lo trovammo fasciato con una
benda di fine ¢ soffice tela in fondo al cofano nel quale erano stati riposti i sette
vasi di alabastro pieni di olio. Levati questi, sul fondo del confano, in mezzo
ad abbondanti cenci di tela, vedernmo luccicare qualcosa, ed era questo bellis-
simo prodotto della oreficeria egiziana. E, come si disse, di lamina d’oro, sos-
tenuta intemamente da anima di legno: si apre alle due estremita con due tes-
tate, che si possono levare ¢ mettere a piacimento, ¢ sulle quali & impresso in
rilievo il cartello reale di Amenofi Il [Amenhotep I1), sostenuto da un Rechit o
uccello con braccia umane (Fig. /54 [=Fig. 1V.27d below]). Intorno alle testate
corre un fregio a cordone finernente lavoraio a sbalzo, ¢ tutta intera la superfi-
cie del cubito & coperta di iscrizioni leggermente rilevate ¢ cesellate, ovvero dei
segni indicanti le varie suddivisioni del cubito.” Then follows a description of
the Royal cubil and the small cubil and their divigions much like the table 1
have given from Lepsius in the texi above and where they are given on the rod.
Now | continue with Schiaparelli's accouni of the cubii (p. 169):

“La faccia superiore del nostro cubito, nonche quella inferiore e quella
di dietro sono coperte con tre distinte ¢ separate iscrizioni; la seconda delle
quali celebra le vittorie di Amenofi H contro il Naharina (la Mesopotamia) ¢
contro i Negri (Fig. 156 [=Fig. 1V.27¢ below}), la prima accenna alla gioia del
popolo egiziano pel valore del Faraone (Fig. /55 [=Fig. IV.27b)), ¢ I'ultima &
pamoolamntemwmmewlemd:momwﬁclncheeonuene After
translating and discussing the historical information in the inscriptions, he rea-
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sons (p. 172) thai this cubil was preparcd for the Pharaoh and then was given to
Cha.

“Oltrech? per la ricchezza della materia e per la finezza del lavoro,
principalmente per le iscrizioni che vi sono impresse, questo cubito non pud
adunque considerarsi come un oggetto di carattere ¢ di uso privato, ma & evi-
dentemente un oggetto commemorativo, un vero monumento, di pertinenza del
Faraone ¢ preparato per esso: ¢ se il medesimo si sia trovato nella tomba di
Cha, & a ritencre che a lui sia stato donato da Amenofi 1 stesso.”

Schiaparelli ( p. 80) also refers to a quite different, practical working
cubit-rod of acacia wood which was divided into two picces hinged together for
easy portability, with a picture of it (Fig. 47 of that work = Fig. 1V.27¢ below).
Presumably its owner, as an architect, would have made much use of it. Both
this and the golden cubit-rod are on exhibit in the Musco Egizio at Torino.

' Hayes here quotes the carlier description by N.E. Scott, “Egyptian Cubit
Rods,” Bulletin of the Metropolitan Museum of Art, n.s., 1 (1942), p. 72 (full
article, pp. 70-75).

12 5cott, ibid., p. 73.

13 Die altagyptische Zeitmessung (Berlin and Leipzig, 1920), pp. 14 and 27-28,
where Borchardt gives tentative suggestions, first with respect to the theory of
the use of ceremonial cubit-rods in connection with outflow water clocks (p. 14)
and then with respect to their use in connection with shadow clocks (pp. 27-
28). When | described outflow water clocks and shadow clocks in Volume
Two, 1 did not discuss these cubit-rods and how they might have been used for
quickly determining variable hour lengths in different months by noting volu-
metric variations of the outflow water or the differences of shadow lengths on
shadow clocks at different times of the year because of the thinness of the evi-
dence for Borchardt's speculations. But, the argument runs, variation of volu-
metric quantities of the outflowing water in the case of the tables which perhaps
pertain to water clocks was assumed because the mcasures expressed were in
terms of the repeated use of the three sums of some Horus-eye fractions (i.c.,
/4 + 1/8 + 1/64, 1/4 + 1/8, and 1/4 + 1/32 + 1/64; for Horus fractions see be-
low, Fig. 1V.3, and Document 1V.1, n. 46), and these fractions were ordinarily
applied only to fractions of a heqat, i.c., a measure of the content of a vessel,
usuallyofgainbutpahapsalsocfaliquidlikewalcr. Furthermore, there is a
distinct reference to “The hour (S wawt, in Fig. IV.27a, cubit-rod no. 3, first
word of register 1) according to the cubit-rod,” followed by the apparent men-
tion of a jar (?) “filled with water.” In the casc of the tables suggested as apply-
ing to shadow clocks, the measures were all in terms of cubits and palms, i.c.,
linear measures, as they would be in comparing shadow lengths at different
months of the year (e.g., see Fig. IV.27a again, but this time to cubit-rod no. 2,
just before the middle of register 1).
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“Helck, op. cit. in note 4 above, cc. 1200-1201. In addition to those quoted
here, Helck gives other less frequently used measures. Note that Griffith, op.
cit. in note 4, pp. 410-20, and the “Table of Multiples and Subdivisions of the
Set or Arura™ gives the value of the 43 (found, 1 have said, in the Amnals on
Stone) as 10 arouras, i.c., 1000 cubit areas, rather than as 10 ¢3, Le. 1000
square cubits, the measure given by Helck. See also Gardiner, op. cit. in note
4, p. 200, who gives examples of the 43 as a 10-aroura measure. He also re-
marks that it is more fully written as hs-13, i.c., 1000-cubit-strips or “1000-
cubit-areas.” He estimates the g3 as “273 5 square metres or roughly 2/3 acre.”
I have given the fractions of the aroura found in the Annals on Stone on page 4
of this volume and in Fig. 1.50 of Volume One of my work. See also Gardiner,
ibid.: rmn = 112 st3t, hsb = 1/4 sp3t, s3 = 1/8 st31, and a cubic strip or 3 = 1/100

s,

13 A_B. Chace, editor, The Rhind Mathematical Papyrus, Vol. 1 (Oberlin, Ohio,
1927), pp. 33-34.

'] take this valne of the hin in liters from Helck, op. cit. in note 4, ¢. 1201.
Gardiner, Egyptian Grammar, p. 199 (Sect. 266), notes that actual inscribed
examples average about .503 liters. Notice that Helck gives the value of the
khar as 10 hegat, while in Problem 41 it is given as 20 hegat.

"7 Chace, op. cit, Vol. 1, pp. 31-32. On pp. 32-33, he remarks that the author
of the Rhind Papyrus asserts the khar to be 2/3 the cubic-cubit, and says that 20
khar “make 100 quadruple hekat or 400 simple hekat. This would make the
hekat 292,24 cubic inches, as stated above.” For further details and bibliogra-
phy on the com-measure and other measures of content, see Gardiner, op. cit.
in note 4, pp. 197-99.

' call to the reader’s attention the detailed list of measures given by Helck in
the article cited in note 4, cc, 1203-05. The exact valne of many of these in
relationship to the standard measures cannot be determined.

19See K. Sethe, Von Zahlen und Zahlworten bei den alten Agyptern und was fur
andere Volker und Sprachen daraus zu lernen ist (Strassburg, 1916), pp. 60-
108, and particularly, pp. 83-89.

® Gardiner, op. cit. in note 4 above, p. 196. In a short communication on the
supposed unacceptable practice of repeating a unit fraction in a series of unit
fractions mentioned by Gardiner in this passage, David Silverman notes a pos-
sible exception in JEA, Vol. 61 (1975), pp. 248-49. See also my comments in
the passage following the Gardiner quotation, which comments suggest a co-
gent mathematical reason for discounting Gardiner’s view that the practice of
not repeating a unit fraction was a general one. 1t is true that the rule or rather
practice is followed in the Table of Two, but obviously not everywhere, as is
evident in the writing of the equalities in Document IV. 5. Also see the interest-
ing effort by M. Caveing, “Le statut arithmétique du quantiéme égyptien,”
Histoire de froctions, fractions d'histoire, coordonné par: P, Benoit et al.
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(Basel, Boston, and Berlin, 1992), pp. 46-50, to explain how the Egyptians’
implicit use use of “proportion” and their concept of fractions as divisions an-
ticipated the later cohcrently expressed views of the Greeks.

4 See Pect, op. cit. in note 3, pp. 17-18, for an evaluation of the Egyptian pro-
cedure given in Problem 32 of Document 1V.1, a procedure that resembles the
modern method of a common denominator to accomplish the addition of frac-
tions, and his somewhat critical judgment of the views of F. Hultsch, “Die Ele-
mente der dgyptischen Theilungsrechnung. Erste Abhandlung,” Abhandlungen
der philologisch-historischen Classe der Koniglich-Sachsischen Gesellschaft
der Wissenschaften, Vol. 17, no. 1 (Leipzig, 1895), p. 112, and L. Rodet, “Les
prétendus problémes d’algébre du manuel du calculateur égyptien (Papyrus
Rhind),” Journal Asiatique, Series 7, Vol, 18 (1881), pp. 196-215 (whole arti-
cle, pp. 184-232, 290-459), which attempt to differentiate the Egyptian and
modern techniques. For Peet the general principle of both techniques is the
same. When presenting the essential parts of the summation in the proof of
Problem 32, Pect (pp. 17-18) he says “Here the Egyptian employs a method
which at first sight appears to be that of a common denominator . All the frac-
tions or aliquot parts scem to be reduced to terms of the highest aliquot part,
namely the 912th part....

“This method [of summing unit fractions] obviously differs in small
details from the modern method of common denominator. For instance, we
always choose as our denominator the smallest number into which all the sepa-
rate denominators will divide integrally. The Egyptian, unfamiliar with the
principle of factors, ofien used a denominator which was smaller than the
L.CM., and consequently had fractional quotients (rarely involving smaller
fractions than 1/8). It is hardly necessary to mention the further difference that
the numerators of the fractions to be added were all unity.

“These, however, are distinctions of mere detail, and despite them the
general principle might be the same. This is denied by both Hultsch and
Rodet.” Peet then goes on to present succinctly the views of these authors as
expressed in the works mentioned at the beginning of this note, concluding
finally (p. 19): “The fact is that both Hultsch and Rodet have been deceived by
notation. There is and can be only one way of adding fractions, though there
may be several ways of writing down the process. The fractions 1/4 and 1/5 are
quite irreconcilable as they stand, and we can only combine them by reducing
them to some smaller part of unity of which they are both multiples, We may
do this in the modern way by means of the common denominator 20, or we may
do it in the Arab way by means of the mokhrag 20. Avoid the notation 5/20 as
we [and the Egyptians] may, we cannot in the end escape the fact that the 20
really stands for the twentieth part of some unit, and thai the § is S-twentieths
of that unit. The process as seen in the Rhind papyrus is particularly deceptive
since all the complicated additions there used are in the nature of proofs, i.c.
the result is known to be some very simple aliquot part, e.g. 1/4 or 1/8, and
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though our denominator or mokhrag may be 960, the fact that we are really
working in 960ths is apt to be overlooked or forgotten when the addition comes
to0 240 or 120, and the 960 drops out of sight, leaving only a simple 1/4 or 1/8.”
2 See the Introduction to Document IV.1 where the carly editions of the Rhind
Papyrus have been mentioned. Here | simply call attention to the first edition by
A. Eisenlohr, Ein mathematisches Handbuch der alten Agypter (Papyrus Rhind
des British Museum) @bersetzt und erklart, Vol. 1 (Leipzig, 1877; 2nd ed,,
1891, though 1877 is still on the title page). Hultsch, op. cit. in note 21, pp.
110-45. See also the later discussions of the red auxiliaries and common de-
nominators from the article of van der Waerden quoted below over note 33 and
in Gillings, op. cit. in note 5, pp. 81-88 and 251-53. The manner in which red
auxiliaries are used in various contexts such as in “completion” problems and
in problems for finding unknowns is also very thoroughly described by E.M.
Bruins, “On Some Hau-Problems,” Janus, Vol. 70 (1983), pp. 229-62 passim.
For an example of their usage in a compuiation found in an ostracon, see also
note 35 below. See the more recent account of Egyptian unit fractions, which
includes a discussion of the red auxiliaries presented by Maurice Caveing, op.
cit. in note 20, pp. 39-48 (full paper, pp. 39-52).

® Griffith, “The Rhind Mathematical Papyrus,” PSBA, Vol. 13 (1891), pp. 328-
32; Vol. 14 (1891), pp. 26-31; Vol. 16 (1894), pp. 164-73, 201-08, 230-48, and
particularly pp. 201-08 of Vol. 16, which includes the quotation given in the
text above. One should also read the early and able treatment of the Table of
Two by Hultsch, op. cit. in note 21, pp. 175-87, who along with Griffith was
onc of the premier students of Egyptian mathematics writing in the first gen-
cration after the publication of Eisenlohr’s edition of the Rhind Papyrus.

M| have substituted Stammbrache for Griffith’s siamm-brache in this quota-
tion, since Hultsch, Neugebauer, and other German authors use the form 1 have
here adopted.

B Peet, op. cit. in note 3, pp. 33-47.

% Chace, op. cit. in note 15, Vol. 1, pp. 16-22.

YThe Egyptian word is ¢, which means “remainder” or “balance™ or
“deficiency.”

B Chace, op. cit., p. 20.

¥ 0. Neugebauer, “Zur Agyptischen Bruchrechnung,” Z4S, Vol. 64 (1929), pp.
44-48; Neugebauer, Arithmetik und Rechentechnik der Agypter. QSGMAP.
Abt. B: Studien, Vol. 1 (Berlin, 1931), pp. 348-80; Neugebauer, Vorlesungen
@ber Geschichte der antike mathematischen Wissenschafien, Vol. 1. Vor-
griechische Mathematik (Beslin, 1934), pp. 137-65, and Q. Vetter, “Egyptské
Déleni,” Société Royale des Sciences de Bohéme, Classe des Sciences, 1921-
22, No. 14. See also EM. Bruins, “Ancient Egyptian Arithmetic: 2/N,"” Kon.
Nederland Akademie Wetanschappen, Set. A, Vol. 55 (Amsterdam, 1952), pp.
81-91; K. Vogel, Vorgriechische Mathematik, Teil 1: Vorgeschichte und
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Agypten (Hannover, 1958), pp. 38-44; Vogel, Grundlagen der agyptischen Ar-
ithmetik (Munich, 1929); Gillings, op. cit. in note 5. pp. 45-80, and B.L. van
der Waerden's older paper, “Dic Entstehungsgeschichte der Agyptischen Bruch-
rechnung,” QSGMAP, Abt. B: Studien, Vol. 4 (1938), pp. 358-82.

®B L. van der Waerden, “The (2:1) Table in the Rhind Papyrus,” Centaurus,
Vol. 24 (1980), pp. 259-74. This is a shorter version of the author’s earlier pa-
per mentioned in the preceding note. Note that van der Waerden expresses unit
fractions in the manner proposed originally by Neugebauer, i.c., the reciprocal
form with a bar or macron over the denominator as a replacement for the unit
numerator, and two bars over 3 to replace the numerator 2 in 2/3. But | shall
substitute the ordinary fractional forms 1/n and 2/3 so that |1 do not continually
have to use the more cumbersome Equations program in MSWord.

% Ibid., p. 264. Note that, in regard to the source of the fourth equality of the
second sequence, 1 have given in Document IV.5 (Col. 3, line 17) the more
obvions reading which leaves the lef-hand members as the scribe of the second
copy thought that they should be, but corrects the right-hand member to 1/14
from 1/13.

32van der Waerden, ibid., pp. 265-67.

3 Ibid., pp. 272-74.

 Gillings, op. cit. in note 5, p. 49.

3 While this precept is generally valid for the Table of Two, there are excep-
tions in other documents, like Ostracon 153 found below the Theban tomb (No.
71) of Senmut, the supervisor of Hatshepsut’s grand temple. W. Hayes edits
and discusses this ostracon briefly in his Ostraca and Name Stones from the
Tomb of Sen-Mut (No. 71) at Thebes (New York, 1942), pp. 29-30, and Plate
XOaX. The computation there includes the multiplication in successive lines of
1/7by 1,2, and 4. Note that the multiplication of 2 x 1/7, which is equivalent
to the division of 2 by 7, yiclds the answer as the sum of the three unit fractions
1/6 1714 1/21 instead of the two unit answer 1/4 1/28 given in the Table of
Two. Gillings, op. cit. in note 5, p. 87, notes the differing solution and dis-
cusses the computation of it as an example of the use of red auxiliaries. 1 give
here the computation, with the red auxiliaries in bold face as usual (see Fig.
V.32 for a photocopy of the ostracon and its hieroglyphic transcription below):

1w
3

2 6 114 1121
3z 112 1

4 12 1/14
10122 1172

Gillings explains this by suggesting the steps that the scribe followed (once

more 1 change Gillings’ notation of unit fractions by a macron over the de-

nominator into unit fractions with numerator 1 and a slant bar before the de-
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nominator): “Whoever inscribed the ostracon was doing just what the scribe of
the RPM [=Document 1V 1) did in problems 28, 32, 36 and several others. The
red 3 beneath the 177 means ‘Take 3 as a multiplier of 7, to give the refereace
number 21." He then multiplied the 2 (of line 3) by his multiplier {3] to give 6
which he then partitioned as 3 1/2, 1 1/2, and 1, each of which divides the ref-
erence number 21 in integers, and wrote them in red (line 4). These are the red

“The scribe of the ostracon then referred these auxiliaries to 21, find-
ing that 3 1/2 is 1/6 of 21, 1 1/2 is 1/14 of 21, and | is 1/21 of 21, so that he
wrote 1/6 1/14 1721 in black in their proper places (line 3). In this terse man-
ner the scribe obtained his answer to the division,

2+7=1/6 1/14 121.

Still with the same red multiplier 3 and the same reference number 21, we note
the 4 (of line 5) was multiplied by 3 giving 12 which was partitioned as 10 172
and 1 1/2, each of which divides the reference number 21 in integers 2 and 14,
which he wrote as 1/2 and 1/14 in their proper places (line 5) in black. It was
thus he obtained his answer to the division,

4+7=12 V14,

We have no way of telling how the scribe came to choose 3 as his multiplier
and, consequently, 21 as his reference number. Nor do we know how he de-
cided upon his particular partitions of 6 and 12.”

1t could be that Gillings has the order of the procedure backward. The
author might have obtained his division in some other way and then supplied
the red auxiliaries as an easy check to the procedure. We should note that the
red auxiliaries recorded in this table add up to 21, i.c., the reference number,
which in this instance is less than a least common denominator where all the
red numbers would be integral parts of it, since the auxiliary numbers here in-
clude fractions as well as integers. 1t is also obvious that if the author had
halved the product of 4 x 1/7 = 1/2 1/14, he would have found the answer 1/4
1/28 that appeared in the Table of Two for the division of 2 by 7.

See also O. Neugebauer's discussion of this ostracon in The Exact Sci-
ences in Antiquity (Princeton, 1952), pp. 87-89. He believes that Hayes’ effort
to restore the original problem by adding “cubit, palm (7)" at the beginning is
“very doubtful.” That suggested addition which Neugebauver would rejoct pre-
oedes four fractions: 1/3, 1/14, 172, 1/21. 1 have not discussed them here since
they seem to have no relation to the succeeding computation. Neugebauer then
goes on to explain the use of the red suxiliary numbers in this computation with
the adoption of the red number 1 for 1/21. He suggests that by this stratagem
the calculator is sbandoming the natural fraction 1/4 in the sequence 1/2, 174, ...
in favor of 1/3 belonging to the sequence 2/3, 1/3, 176, .....

% Among the tables that occupy the first half of the Akhmim Mathematical
Papyrus, which reflects Egyptian practices but which is written in Greek and
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dates from more than two millennia later in the Byzantine period, say about the
seventh or eighth centuries A.D. [see J. Baillet, “Le Papyrus mathématique
d’Akhmim,” Mémoires publiés par les membres de La Mission Archéologique
Frangaise au Caire, Vol. 9 (1892), p. 4), the first part of the table, which gives
the multiplication of the first nine units by 1/10, gives the same numbers for the
quotients or products in this as the table in the Rhind Papyrus, discussed here
except for the following entries (ibid., p. 28): 1/10 x 3 = 1/4 1/20 (instead of its
equal 1/5 1/10 in the RMP), 1/10 x 7 = 1/2 I/5 (instead of 2/3 1/30 in the
RMP), 1710 x 8 = 1/2 1/4 1/20 (instead of 2/3 1/10 1/30 in the RMP), and 1/10
x 9= 1/2 1/3 1/15 (instead of 2/3 1/5 1/30).

% See Chace, op. cit. in note 4, Vol. 1, p. 100.

M See Gillings, op. cit. in note 5, pp. 24-25, where he gives instances of the
taking of 2/3 of varions quantities from the Rhind Papyrus (Document IV. 1),
®Peet, op. cit. in note 3, p. 20.

“ JEA, Vol.12 (1926), pp. 125-26.

“ Gillings, op. cit. in note 5, Chap. 4, pp, 24-38, The table in Problem 61 of
Document IV.1 is crucial to his discussion.

2 Ibid,, pp. 39-40,

> Again note that | have changed Gillings' use of the reciprocal form of the
unit fractions to the form that writes out the unit fractions with numerator 1
and slant-bar,

* Ibid., pp. 40-44.

“Ibid, Appendix 11.

“ Ibid., Chap. 21 and Table 21.1,

“'TE. Peet, “Mathematics in Ancient Egypt,” Bulletin of the John Rylands
Library Manchester. Vol. 15 (1931), p. 417. For the vetb sny or sni see R.O.
Faulkner, A Concise Dictionary of Middle Egyptian, rept. (Oxford, 1972), p.
229. In Document IV.2, Problem 11, Fig. 1V.6, Col. XXI, lines 5 and 6 the n
(™) is missing,

@ Op. cit. in note 47, p. 418,

® Vorlesungen aber Geschichte der Mathematik, Vol. 1 (Leipzig, 1907), pp.
74-76; “An der Spitze dieser Aufgaben stehen die Hau-Rechnungen, die dem
Inhalte nach nichts anderes sind, als was dic heutige Algebra Gleichungen er-
sten Grades mit einer Unbekannten nennt.... Das Wesen einer Gleichung besteht
nun allerdings weit weniger in dem Wortlaute als in der Auflosung, und so
missen wir, um dic Berechtigung unseres Vergleichs zu prifen, zusehen, wie
Ahmes seine Haurechnungen vollzicht. Er geht dabei ganz methodisch zu
Werke, indem er die Glieder, welche, wic man heute sagen wirde, links vom
Gleichheitszeichen stechen, zunfichst in eins vereinigt. Freilich tut er das in
doppelter Weise, bald so, dass die Vereinigung im Nebeneinanderschreiben der
betreffenden Stammbriche bestehend nur eine formelle ist, z.B. No. 31.: (1 273
172 1/7) x = 33; bald so, dass durch Zuriickfithrung auf einen Generalnenner
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wirkliche Addition vorgenommen ist, z. B. No. 24.: (8/7) x = 10; No. 28.:
(10/9) x = 10; No. 29.: (20/27) x = 10. 1m ersigenannten Falle wird sofort
durch den Koeflizienten der unbekannten Grosse in die gegebene Zahl di-
vidiert..d. h bei No. 3. man vervielfaltigt ! 2/3 1/2 1/7 solange bis 33
herasuskommen und findet... Wert des Haufens 14 1/4 197 1/56 1/679 17176
17194 1/388.... Der zweite Fall eroffnet wieder zwei Moglichkeiten. Entweder
man 16st (@b} x = C indem di¢ Division C/a vollzogen und deren Quotient mit
b vervielfacht wird; so in No. 24, wo zuerst 8 in 19 als 2 1/4 1/8 mal enthalten
und dann 7 mal 2 1/4 1/8 als 16 1/2 1/8 gefunden wird. Oder aber man di-
vidiert mit ab in 1 und vervielfacht diesen Quotienten mit C, so wahrschein-
lich in den Aufgaben No. 28 und 29.”

% Cantor in the next paragraph (on p. 76) suggests the possibility here of the
usage of the so-called Hindu method of False Position, as is indeed widely ac-
cepted by interpreters of the calculating method involved in the solutions of
Problems 24-27. He says that when the intermediate text is missing it is
“almost a matter of taste (Geschmackssache) whether onc will recognize the
onc or the other {technique as suitable].” But, as our translation and discussion
shows, in Problems 24-27 the method of false position was in all likelihood
used by the Egyptian author, even though the actual false assumptions were not
specified as such and only appear as numbers in the tables of multiplications.
Influenced by Chace, I have inserted them as assumptions but only within
brackets.

S TE. Peet, “Mathematics in Ancient Egypt,” pp. 419-20, as fully cited in note
47.

52 Here Peet refers to a succeeding footnote (p. 422, n. 2) with the following
comments regarding Neugebauer’s views: “Nengebauer in a recent publication,
Arithmetik und Rechentechnik der Agypter (Quellen u. Studien zur Gesch. d.
Math{ematik, Astronomie und Physik], A. B., Bd. 1, Heft 3), pp. 305 fI, de-
nies the use of a trial number, be it unity or any other (number] in all these
problems and returns to Cantor's theory that they are solved as equations, in
the modern manner, by multiplying the absolute term (on the right in our mod-
ern arrangement) by the inverse of the coefficient of x (on the leR). The un-
known x is, of course, the “h° or ‘quantity’, and in onc case, M.25 [= MMP.25,
i.e., Document V.2, Problem 25 below], where the equation is 2x + x = 9,
Neugebauer believes that this unknown is explicitly operated on under the
name 4. The words are ‘Add the quantity to the 2; result 3. Divide the 3 into
9; result 3 times. 3 is the number required.” At the same time, even if we ac-
ceptﬂ:eanimwrdnngofﬂ:etextherennspncofﬂ:emspmonthmwnon:t
by the occurrence of a vital omission in the setting of the sum (the preposition
hn* is followed by no object!), and agree that it involves the explicit use of an
unknown and the solution of an equation in the modem style, it does not follow
that the same method was used in other cases. Indeed it is by no means a merit
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in Neugebauer's hypothesis that it assumes uniformity of treatment in all these
problems, even including those which correspond to equations of the second
degree, for the outstanding characteristic of Egyptian mathematics is precisely
the lack of any such uniformity.

“Thus while I should be sorry to deny outright the possibility of
Neugebauer’s being right in regard to such problems as are solved by what I
have called direct divigion (R. 30-38, M. 19, 25 [i.c.,, Document IV.1 (RMP)
Problers 30-38 and MMP Problems 19 and 25]), yet I still think that in R. 24-
27 [i.e., RMP Problems 24-27], where the coefficient of x (speaking in modern
terms) is | plus an aliquot part, e.g., | 1/7 (R. 24), the method used was one of
trial, the trial number chosen being, for obvious reasons, in each case the de-
nominator of the aliquot part, ¢.g, in the case quoted, 7. In this example, if
Nengebaner were right, and the process was that of simply dividing the 19 by
the coefficient of x, namely 1 1/7, the method would have been that of R. 31-34,
namely to operate on | + 1/7 to find 19. Yet he asks us to belicve that the
Egyptian turned 1 1/7 into 8/7 (an improper fraction, be it noted), and then
multiplied the 19 by the inversion of this. Where in the papyri can we find a
justification for such a procedure? What Egyptian ever took seven-eighths of
l9 by dividing it by 8 and multiplying the result by 7....[7)”

% Gillings, op. cit., pp. 181-84.

 Science Awakening, p. 29,

%5 Peet's last words in his “Mathematics in Ancient Egypt,” pp. 423-24, seem to
reflect a similar belief in the essential absence of algebra in Egyptian mathe-
matics, though to be sure he seems to waffle somewhat in his summary.

% Where this number came from is not clear, as I indicate in my text above this
note. The table is merely an example of how to find the product of some num-
ber and 7 by the usual process of adding the products of doubling the multiples
that add up to 7. Hence each term in the following series that starts with 7 and
whose multiplier is 7 could be determined in the same way. There have becn
efforts to link the succeeding series with the old nursery rhyme that starts with
the line “As I was going to St. Ives....” but all we have are the simple calcula-
tions given here. Chace (op. cit., Vol. 1, p, 30) gets more out of the bare calcu-
lations presented when he writes: “Problem 79 is a problem in which is calcu-
lated in two ways the sum of a geometrical progression. There are two columas.
The first column indicates, it seems to me, a numerical method for determining
the sum when the first term is equal to the ratio. This method may be stated in
the following rule; In any geomctrical progression whose first term is equal to
the ratio, the sum of any number of terms is equal to the sum of one less num-
ber of terms plus 1 multiplied by the ratio. This rule the author follows in the
first column, and in the second he performs the ordinary process of multiplica-
tion by the ratio and adds the terms together, getting the same result and
thinking perhaps he was proving the rule.” In the same volume (p. 112) Chace
quotes the nursery thyme and mentions Rodet’s observations concerning the
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problem (see below p. 203 n. 109). See also Gillings, op. cit., pp. 166-70, for
an extended discussion of Problem 79, where a modemn interpretation of the
lem is even more pronounced.
" Neugebauer, Arithmetik und Rechentechnik (cit. in note 29 above), p. 317.
2 Gillings, op. cit., p. 169.
# Gillings, ibid., pp. 134-36, shows all of this by the use of modern literal and
operational symbols, and remarks in admiration (p.136): “However one looks
at this ‘round-about’ method of solution, it is entirely logical and indeed ele-
gant, whether or not the scribe arrived at it by some algebraic or symbolic
thought processes, or by some other means,”
© peet, “Mathematics in Ancient Egypt,” pp. 427-28,
¢ L. Borchardt, “Besoldungsverhaltnisse von Priestern im mittleren Reich,”
ZAS, Vol. 40 (1903/1904), pp. 113-17. Borchardt believed that the scribe in
fact divided the bread and two beers into 42 portions, though the text lists only
41 2/3. This would have resulted in a jumble of scribal errors in the final col-
umn regarding the portions of the second beer. Gillings, op. cit., pp. 124-27
accepted Borchardt's belief of the divisions by 42 and accordingly added a cor-
rected last colamn on that basis. But if we assume, with Michel Guillemot,
Chapter 3 of Histoire de fractions, fractions d'histoire, coordonné par P. Benoit
et al,, (Basel, Boston, and Berlin, 1992), Chap. III, pp. 54-60, that the division
was by 41 2/3, as the text seems to say, and that the author accepted more real-
istic approximations, we have a more sensible interpretation of the text. The
reader will notice the wide-spread use of approximations in other account-
books (see Document I'V.6 below).
€2 See the similar remarks on the probable grahic origin of the formula made by
Pect, “Mathematics in Ancient Egypt,” p. 432: “It seems much more natural,
however, to accept the hint of a graphic solution offered by this reference to a
rectangle on half the base, and to suppose that the Egyptians had rightly solved
the scalene triangle by means of some such figure as Fig. 3 [Authar = my Fig.
IV.35a). This belief is strengthened by R.52 [=Document IV.1, Problem 52;
see the text over the next note], where a truncated triangle is proposed for solu-
tion.” The reader will find Peet’s whole treatment of the area of the triangle
g:p. 430-34) of interest.
Ibid., pp. 432-33.
“ Gillings, op. cit., p. 140.
Ibid, p. 139.
% bid., pp. 143-45. For Michel Guillemot’s clever proposal about the nature
of the inscribed octagon given in Problem 48 and described briefly in the text
above following Gillings® proposal, see his (Guillemot’s) “A propos dela
*géométric égyptienne des figures',” Sciences el techniques en perspective,
Vol. 21 (1992), pp. 138-40 (full anticle, pp. 125bis-146). Sce also Fig. IV.40
below.
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'L, Borchardt, “Altigyptische Werkzeichnungen,” ZAS, Vol. 34 (1896), pp,
75-76 (entitted “Construction ciner Ellipse aus Lugsor™): “Zum Schluss mag
hier noch eine weitere Zeichnung Erwahnung finden, wenn dieseibe auch wohi
kaum als Werkzeichnung anzilsehen ist.

“Im Lugsortempel, an der Ostwand des Ostlichen von der spiteren
koptischen Kirche abgehenden Raumes, befindet sich gegentiber der Thilr in
Augenhdhe in dic Wand gekratzt die Construction eines elliptischen Ovals (s.
Taf. VI, Fig. 7 [=my Fig. IV.42]). Als Halfslinien fur die Herstellung dessel-
ben sind die Seiten eines liegenden Rechtecks benutzt, dessen Ecken durch
syminetrisch angelegte Querlinien abgeschnitten sind.

“Die Construction ist angenihert etwa folgende:

“In dem Rechteck ABCD, dessen Seitenlingen AB = DC =2a =2 +
1/2 + 1/4 Ellen und AD = BC = 2¢=1 + 2/3 Ellen (zu je etwa 53 cm) sind,
werden auf den Langsseiten von den Ecken aus die Strecken AA,, BB, CC;
und DD, = 1/4 AB = a2, sowie auf den Schmalseiten die Strecken A4, BB,
CC; und DD; = 1/6 AB = a/3 abgetragen. Dic Mittelpunkte der durch
AA,;B,B,C,C:D1D; gehenden ovalen Korblinien liegen erstens auf den Mitten
der Langseiten in x, x; und zweitens auf dem Schnittpunkt der Linien xB; und
![Cz oderxA; und !ID:.

“Die Axen der so entstchenden Curve sind angendihert 2 und 3 Ellen,
die Mittelpunkte der kleinen Kreisbogen sind angenihert 2 Ellen von einander
entfernt. Dies die einc Moglichkeit, die Construction zu erklaren.

“Eine zweite Deutung der Zeichnung scheint jedoch auch nicht aus-
geschlossen. Ich halte es namlich nicht fiir unméglich, dass wir hier einen
Versuch vor uns haben, den Inhalt ciner Ellipse mit den Radien 1 und 1 12
Elle zu ermifteln, analog der aus dem Londoner mathematischen Papyrus
bekannten Aufgabe vom Inhalt des Kreises ((64/81) & anstatt (/) ). In
unserer Ellipsen-Aufgabe wire der Inhalt [abrr = 1o | 1/2 ¢ x = 4.71 Quadrat-
Ellen] etwa gleich dem des Rechtecks [1 2/3 ¢ 2 3/4 = 4.58 Quadrat-Ellen] ge-
setzt. Der Fehler wiire hierbei nur 13/471, d.h. etwa 1/36. Es whre auch
mdglich, dass die Inhaltsermittelung so erfolgt ist: Die Ellipse mit den Durch-
messern von 2 und 3 Ellen ist gleich einem Rechteck, dessen Seiten auf jeder
Seite 1 Spanne (0.75 m) kirzer sind als die Durchmesser der Ellipse [(2-2/7) ¢
(3-2/7) = 4.65 Quadrat-Ellen]. Hierbei whre der Fehler sogar nur 6/471, d.h.
etwa 1/78.

“Was von allen diesen Moglichkeiten das Richtige ist, kann ich wegen
der Ungenauigkeit und mangelhaften Erhalten der Zeichnung nicht feststellen.

“Auch die Entstehungszeit ist zweifethaf, cinen terminus post quem
giebt uns die Mauer selbst, auf welche die Construction aufgetragen ist. Sie ist
nach der Zeit Ramses' [1l. ausgefihrt.” [I have converted the commas used in
the decimal fractions in this passage to periods for the convenience of the read-
ers with English.]
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S. Couchoud, op. cit., p. 66, makes the following observatious con-
cerning this drawing of the cllipse: “Celle<ci [i.c., le dessin] est composée A
I'aide de parties de cercles de différents centres et diamétres.

“Ce dessin montre I’approximation d'une ellipse et d’un rectangle qui
représente, 4 une petite erreur prés (d’environ 1%), la surface de I'ellipse. Elle
peut ére définie par analogie avec le cercle par la formule:

[a- (19)a) x [b— (179)b) = a x b x (64/81) ~ a x b x (x/8)

“Que le rectangle ait servi comme aide de construction ou comme
représentation pour la surface n’a en fait que peu d’importance; 1’essentiel est
bien que le dessin dounc une preuve nette que I'idée méme de I'ellipse n"&ait
pas étrangdre 4 esprit égyptien, On pouvait donc la construire et en toute
probabilité 1a calculer. Rappelons de plus que, de son cbté, Daressy [“Un tracé
dgyptien d’une vodte elliptique, “AS4E, Vol. 8 (1907) pp, 237-41] a cru pou-
voir reconnaitre, dans le dessin de construction d'une vodite, I'arc d'une el-
lipse.” We should note Daressy's concluding comments concerning the sketch
of what he believed to be an ellipse before the vault in the burial chamber of
Ramesses VI: (Jbid. p. 241): “Ce simple croquis nous dounc donc plusieurs
renseignements: il nous fait connaitre un des moyens pratiques usités par les
Egyptiens pour faciliter le travail des sculpteurs, nous fournit une valeur de la
coudée sous Ramsés VI, et enfin nous apprend que mille deux cents ans avant
notre &re I'cllipse &ait connue et employée pour les travaux d’art.”

For later building sketches of other curves, see the remarks of Bor-
chardt that immediately precede those on the ellipse in his section enititled
“Eine Hohlkehle aus Edfu,” op. cit. in note 67, pp. 74-75 and Taf. V, Fig.6.
®See G. Wolff, “Agyptische Mathematik in Kunst und Handwerk,” Die deut-
sche hohere Schule, Heft 13/16 (1941), pp. 266-67. Note that Wolfl uses
“Handbreiten™ where | have used “palms”. Handbreit is ambiguous for as 1
noted in the table | have given in the section on Egyptian Measures earlier in
this chapter, a “handsbreadth” (as appearing in Griffith’s version of Lepsius’
table, but now usually “handbreath™) equals 5 fingers or digits, while a palm is
4, and the text on the limestone fragment surely intends the measure to be a
“palm” (see Fig. IV.43 below). The difficulty is that now “handbreit” is usually
translated into English as “palm”. One might be tempted to call this technique
of indicating the variation in the ordinate heights of a curve on eqnally spaced
horizontal distances an adumbration of analytic gecometry. But this should be
strongly resisted, for there is no evidence that it represents an effort to draw a
geometrical curve whose character has been expressed as a function cither al-
gebraically or rhetorically. Perhaps we might call it a kind of early descriptive
geometry born of practical measurement, for in fact many building or work
sketches that reflect this Egyptian descriptive geometry have been found. See
Wolff, “Uber die Anfange der darstellenden Geometrie,™ Unterrichtsbldtier fir
Mathematik und Naturwissenschafien, Vol. 47(1941), pp. 163-68. 1 shall dis-
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cuss this development of Egyptian geometric representation in discussing the
nature of Egyptian representations of nature in the next volume.
© Peet, “Mathematics in Ancient Egypt,™ pp. 436-37, remarks on several of
these efforts to show how the Egyptians found the correct procedure for finding
the volume of a truncated pyramid. See also the multiple references to previous
treatments in Gillings, op. cit., pp. 187-93 (which of course includes his own
proposals). 1 have given Gunn-and-Pect’s and van der Waerden's suggestions
in my succeeding quotations. Incidentally, Peet declares that “Egyptian solid
geometry reaches its highest point in M.[Problem]14,” a judgment often echoed
in other accounts.
™B. Gunn and T. Eric Pect, “Four Geometrical Problems from the Moscow
Mathematical Papyrus,” JEA, Vol. 15 (1929), pp. 179-80.
" Science Awakening, the English edit. (Groningen, Holland, 1961), pp. 34-35.
Note that carlier Quido Vetter, “Problem 14 of the Moscow Mathematical Pa-
pyrus,” JEA, Vol. 19 (1933), pp. 16-18, started with a frustum of the same kind
of special pyramid, namely one in which two sides are at right angles to the
base and to each other. Furthermore, both authors assume that the Egyptian
geometer knew the general formula for the volume of 8 pyramid, namely V =
(h73) x base. But Vetter also assumed and specified that, in the special frustum,
the side of the upper surface is half the side of the lower, as in Problem 14.
Furthermore, instead of transforming the frustum first into three rectangular
parallelepipeds and a pyramid followed by the transformation of the pyramid
into a fourth parallclepiped, as van der Waerden was to do in the passage |
have quoted in the text, Vetter (see Fig. 1V.9D) dissects the frustum into two
quadrilateral pyramids, ABCDG and EFGHA. and two trilateral pyramids,
ABFG and ADGH. The sum of these four volumes is precisely equal to the vol-
ume of the whole frustum. If a and b are respectively the sides of the lower and
upper square bases, then we may express the final volume in algebraic form as
V= (h3) &+ 2 (b3) (a/'2) + (W3) b
= (P +ab+ b3,
which latter expression conforms, as a gencral statement, to the Egyptian nu-
merical procedure wherea = 4,5 =2, and h=6.
™ [See O. Neugebauer, Vorlesungen aber Geschichte der antiken Mathema-
tischen Wissenschaften (Berlin, 1934), p. 128).
73 Gunn and Peet, op. cit. in note 70, pp. 180-82.
™ Ibid., pp. 182-83,
™ “The Truncated Pyramid in Egyptian Mathematics,” JEA, Vol. 16 (1930),
pp. 242-49, Vogel notes (p. 245 ) that “[assuming that the volume of a pyramid
or cone can be worked ont,] the volume of the truncated solid can be deter-
mined as the difference of two complete solids without further special formulae,
so long as one can first, by means of a proportion, work ont the height of the
pyramid or the cone needed to complete it. This method is enounced by Heron
in Metrica 11, 7.” He further suggests (p. 249) that the basic formula for the
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frustum could be worked out by taking the average of the three arcas o°, ab, and
»? and multiplying it by the height, that is:

V(@ +ab+b))/3)eh.
But of course in Problem 14 of the Moscow Papyrus we saw that the author did
not take one-third of the sum of the arcas but rather took one-third of the
height. Incidentally, regarding the discovery of the formula for the whole
pyramid Gillings, op. cit., pp. 189-92, has the following observations:

“It would of course have been a simple operation to construct a hollow
pyramid and a hollow rectangular box of the same base and height, to deter-
mine that the pyramid had a capacity exactly one-third of the box by simply
pouring sand or water. That the Egyptians understood the volume of a rectan-
gular solid to be / x b x d is well attested, so that the volume of an equivalent
pyramid would be expressed as one-third of the area of the base times the
height, or one-third of the height times the base....Not so simple is the method
of dissection, in which a pyramid is cut up and the parts reformed into a rec-
tangular solid whose volume can easily be calculated. None of the dissections 1
have seen are simple or convincing, but 1 suggest the following would be within
a scribe’s capabilities. A right pyramid is constructed of clay or wood, whose
perpendicular height is exactly half the side of the square base. This pyramid is
then cut into four equal oblique pyramids by two planes passing through the
vertex and the midpoints of opposite base lines...[see Fig. IV.9E]. Then three
of these four oblique pyramids fit together to form a cube whose sides are half
the base of the pyramid. Therefore in volumes the cube is 3/4 the pyramid, or
the pyramid is 4/3 the cube. Then the volume of the pyramid is found tobe V' =
(1/3) ha’.” Gillings goes on to present still another another graphic solution,
which I omit here.

" Vol. 1, Vorgriechische Mathematik (Berlin, 1934), pp. 129-37. Neugebauer
gives a third interpretation of the problem, namely, as the approximate surface
area of a dome-shaped grannary (see Fig. IV.39).

™ Al this point 1 mention only the second edition of E. Iverson's well known
Canon and Proportions in Egyptian Ari (Warminster, England, 1975), a revi-
sion accomplished with the collaboration of Yoshiaki Shibata,

™ For example, sce the discussion and citations of Peet, “Mathematics in An-
cient Egypt,” pp. 437-41. One of the most careful attempis to avoid anachro-
nism (at least with respect to geometry) is that of M, Guillemot, “A propos de
la ‘géométrie égypticnne des figures®,” Sciences el lechniques en perspeclive,
Vol. 21 (1992), pp.125bis-146, a paper I have referred to earlier in note 66. He
tends to prefer the belief that many of the so-called rules or formulas originate
not ont of formal geometrical argument but rather out of satisfying economic
necds with skiltfully used arithmetic procedures applied to measurements.
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DOCUMENT IV.1: RMP

DOCUMENT 1V.1
The Rhind Mathematical Papyrus: Introduction

I have selected the Rhind Mathematical Papyrus as the first
document for two reasons. (1) Though it is not the earliest docu-
ment (being dated in the introductory passage by its scribe Ahmose
as the regnal “year 33, month 4 of [the season] Akhet, [under the
majesty of the] King of [Upper] and Lower Egypt Awserre,” i.e.,
the Hyksos King Apophis who reigned c. 1585-1542 B.C.), the
scribe goes on to say in its introductory paragraph that it was cop-
ied “from an ancient copy made in the time of the King of Upper
[and Lower] Egypt, [Nym]atre,” i.e., Amenemhet III, who reigned
c. 1844-1797 B.C.; hence this puts the work solidly in the classical
period of ancient Egyptian mathematics, along with the earliest of
the rest of our documents. (2) It reveals the character and extent of
Egyptian mathematics better than any of the succeeding documents
and so makes an excellent introduction to Egyptian mathematics.

Let us first review briefly the history of the Rhind Mathe-
matical Papyrus. As the facsimile edition of it published by the
British Museum notes, it was discovered in a small building near the
Ramesseum, which lies on the west bank of the Nile at Thebes, and
it was purchased in Luxor in 1858 by A. Henry Rhind, an English
traveler and writer.' The sale was a part of his purchase of a num-
ber of Egyptian antiquities.” Following a later visit to Egypt, Rhind
died on the way home. His executor sold the papyrus (then in two
pieces) to the British Museum in 1865 and these two pieces were
given separate numbers: BM 10057 and 10058. The two pieces
were once parts of a single roll but were separated in modemn times.
Further fragments of the original were discovered by P.E. New-
berry in 1922. They had been purchased at Luxor in 1862-63 by
the American Edwin Smith, whose interest in Egyptian papyri I
have already mentioned in Document II1.2 of Volume Two of my
work. Incidentally, the Smith fragments, which came from the gap
between the two pieces purchased by the British Museum, were
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first housed by the Historical Society of New York (where New-
berry found them) but are now at the Brooklyn Museum. Detailed
measurements of the pieces were given by Eric Peet, who refers
also to earlier discussions’ The most recent measurements
(diminished from the earlier ones) were occasioned by the conser-
vation work on the papyrus done during recent years; these later
measurements are given in a note by T.G.H. James:*

The present measurements for BM 10058 are 199.5cm by
32cm, and for BM 10057, 295.5cm by 32cm; again 18cm
are allowed for the gap. The diminution in measurements
[from those given by Peet and Chace] is due to the conser-
vation work carried out on the papyrus in recent years.
After the document was received into the British Museum
its two parts were mounted on a backing card with an uni-
dentified adhesive under some pressure. The deterioration
of this card led to splitting and damage (but not loss) to the
papyrus. Only during the last ten years have techniques
been developed which have allowed the safe removal of
long documents from their backing. Using these new tech-
niques conservation staff in the British Museum have been
able successfully to detach and remount the two sheets
without applying a permanent backing. The removal of the
backing and the relaxation of the stresses which had affected
the papyrus over more than one hundred years led to the
shrinking of the fabric of the sheets. Further reduction in
length resulted from the closing of many small gaps where
the papyrus and its backing had split. The condition and ap-
pearance of the papyrus are now greatly improved.

First and very preliminary accounts of the papyrus and its
significance were given by F. Lenormant® in 1867, S. Birch® in
1868 and H. Brugsch’ in 1874. The brief paper of the last of these
authors was criticized by August Eisenlohr,® who in 1877 effected
the first publication and translation of the hieratic text.” The next
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important landmark in the history of the papyrus was a series of ex-
cellent articles appearing from 1891 through 1894 and written by
F.Ll. Griffith, one of the truly great students and translators of the
ancient Egyptian language.' The next step in the spread of the
contents of the Rhind Papyrus was the publication in 1898 of a new
facsimile edition by the British Museum, and, as I have noted in
notes 9 and 10, it was reviewed in 1899 by Griffith and compared
to Eisenlohr’s edition, neither one of which was, strictly speaking, a
“facsimile.” And neither was without considerable fault. In fact,
Battiscombe Gunn’s negative judgments on both editions, in the
course of his 1926 review of Eric Peet's new version of the papy-
rus, lsleem more than justified and thus are worthy of quotation
here.

Shortly after their acquisition of the main [Rhind Mathe-
matical] papyrus the Trustees of the British Museum had
lithographic plates prepared for a facsimile reproduction; in
the publication, however, they were anticipated by August
Eisenlohr, who in 1877 brought out facsimile plates accom-
panying a treatise, Ein Mathematisches Handbuch..., which
until now has remained the only comprehensive treatment of
the document. Not until 1898 did the British Museum fac-
simile appear, by no means an improvement on its predeces-
sot. (Plus a note which reads: While Eisenlohr’s plates re-
spect the divisions of the text, one might think that a blind
man had been entrusted with the division of the British Mu-
seum plates.) Eisenlohr’s book, now nearly 50 years old, is
both antiquated and unsatisfactory in treatment: not only
does it contain a quantity of wrong readings, translations
and interpretations, and omits the fragments in America, but
also the explanations of the exercises are often complicated
and abstruse to a degree which is wholly unnecessary in
dealing with a mathematical system so simple in its princi-
ples as the Egyptian one. For many years a new edition of
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the papyrus has been badly needed; this want is now ably
supplied by Professor Peet’s work.

As the reader has seen in Chapter Four and will continue to
observe in the notes to the translation of the Rhind Papyrus below,
the Peet edition of the papyrus published in 1923 proved to be of
great importance both for the understanding of this work and the
general profile of ancient Egyptian mathematics. But prior to the
appearance of Peet’s work, indeed even before the publication of
the British Museum facsimile edition of the Rhind Papyrus, a large
number of articles and books of varying significance for understand-
ing the papyrus were published. We can note as very important
studies, for example, F. Hultsch’s 1895 treatment of Egyptian
Theilungsrechnung'® and K. Sethe’s superb monograph: Von
Zahlen und Zahlworten bei den alten Agyptern und was fiir andere
Volker und Sprachen daraus zu lermnen ist. FEin Beitrag zur
Geschichte von Rechenkunst und Sprache (Strasbourg, 1916). In
addition to the somewhat later edition of Chace (see above, note 1),
which is still by far the best version of the Rhind Papyrus and which
will be mentioned again and again in the course of presenting this
document, a whole host of other authors of more recent vintage
(like Neugebauer, Van der Waerden, Bruins, Gillings, Couchoud,
and Guillemot, to specify a few whose works are listed in my bibli-
ography below) will be mentioned in the notes or in Chapter IV
when I consider their views to be pertinent.

Though I have discussed the Rhind Papyrus at some length
in Chapter Four above and certainly do not wish to repeat that dis-
cussion here, it seemed appropriate to include here a brief outline of
the chief subjects of the papyrus in the order of their appearance;

Table of the Division of 2 by the Odd-numbers 3-101
(Chace’s Plates 2-33);

Table of the Divisions of the Numbers 1-9 by 10 (ibid.,
Plate 33);

Problems 1-6: the Successive Divisions of 1, 2, 6, 7, 8, and
9 Loaves of Bread among 10 Men (ibid., Plates 34-38);
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Problems 7-20: Multiplication of some Fractional Expres-
sions by other Expressions that include the number 1 and a sum of
Fractions that consists only of Unit Fractions (Problems 7-15, ibid.,
Plates 39-42) or by still other Expressions that include the number 1
and a sum consisting of 2/3 plus some Unit Fractions (Problems 16-
20, jbid., Plates 42-43),

Problems 21-23: Completion of given sums of Unit Frac-
tions to make 1 in the first two problems (ibid., Plates 44-4S5), or to
make 2/3 in the third problem (ibid., Plate 46);

Problems 24-29: Quantity (“4<) Problems, i.e., Problems of
Finding an Unknown Quantity when an expression involving the
Unknown and Fractions of it is specified (ibid., Plates 47-51);

Problems 30-34: Problems of determining an Unknown
Quantity when an expression involving the addition of the Un-
known and Fractional Parts of it is specified (ibid., Plates 52-56);

Problems 35-38: Divisions of a Heqat-Measure (ibid.,
Plates 57-60);

Problems 39-40: Divisions of Loaves involving Arithmetic;,
Progression (ibid., Plates 61-62);

Problems 41-46: Finding the Volumes of Three Cylindrical
Granaries and One Rectangular Granary (ibid., Plates 63-68);

Problem 47: Division of 100 Heqat (ibid., Plate 69);

Problems 48-55: Area Problems, including a Circle, its Cir-
cumscribing Square and its equivalent square, Triangles, Trape-
zoids, and other Setjat problems (ibid., Plates 70-77),

Problems 56-60: Pyramids and the Relations of the Lengths
of Two Sides of a Triangle, i.e., those involving Seqed (Slope) and
Altitude Determinations (ibid., Plates 78-82);

Problems 61-84: Miscellaneous Arithmetical Determinations
(ibid., Plates 83-105).

The remaining bits of the papyrus (Numbered 85-87) do not
appear to belong to the mathematical tract that precedes them.
Specific comments of mine and others on various aspects and
problems of the mathematical tract are included in the endnotes that
follow the translation.
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In presenting my English translation of the famous Rhind
Papyrus I have followed the hieratic text of A.B. Chace, given here
with hieroglyphic transcriptions in Figs. IV.2a-IV.2aaa, and I have
also stayed close to Chace’s translation. In doing so, I have silently
accepted most of his decisions concerning the false appearance or
lack of appearance of the dots indicating unit fractions. I have also
accepted his standardizing of the check marks or strokes that indi-
cate the lines to be added in the various parts of the Table of Two
and the subsequent problems. The reader may easily locate, and
will benefit from, Chace’s explanatory additions to the translation in
Volume One and his various comments concerning the state of the
text in Volume Two of the work.

One distinction of my version from that of the earlier
authors is that I have bracketed all additions I have made in order
to clarify the rather succinct and syncopated Egyptian text. For in-
stance, in the Table of Two I have bracketed and italicized each of
the successive divisions of two by the odd numbers from 3 to 101,
thereby making these bracketed and italicized phrases subtitles for
the separate solutions. Some of my notes refer to these bracketed
additions, while many others attempt to clarify further the aims of
the author in his mathematical operations. Still others discuss pos-
sible alternate translations of the Egyptian words used by the
author.

The use of bold-faced type in the translation indicates rubri-
cation appearing in the papyrus, The categories of words, phrases,
and numbers rubricated by the scribe are the following: (1) the gen-
eral title of the work at the beginning of it, (2) the word “Call”
(ny$) or the full expression “Call 2” with which the first fractional
division of 2 on each page of the Table of 2 begins (and which is to
be understood as applying to every division of 2 on that page of the
table; see the divisions by 3, 17, 29, 41, 53, 65, 77, 89, and 101),
(3) the initial numbers in each division of two that are the parts of
(i.e, the fractional multipliers of) the denominators that effect
products which add up to 2, (4) the word “Procedure” ($$mr),
which appears before the working out of the division in many cases,
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(5) the so-called red auxiliary numbers used in the Egyptian version
of common denominators that are often put under the unit fractions
that are being added in the problems that follow the Table of Two,
and (6) the slant checks ( \ ) before each of the lines of multiplica~
tions that are to be added (but rubricated in the Table of Two only
through the division of 2 by 9). All of these usages can be most
easily found in Chace’s plates, which are included in Figs. IV 2a-
IV.2aaa But they can also be found, with somewhat more difficulty
because of the complexity of the actual layout on each page of the
papyrus, in the recent photographic plates of the work of Robbins
and Shute (see note 2). I have not converted the rubricated check
marks to bold-faced type, but have done so, for the most part, in
the cases of other usages. I note further that I have represented the
Horus-eye fractional signs for the following fractions of a heqat:
172, 1/4, 1/8, 1/16, 1/32, and 1/64, when they appear in the Rhind
Papyrus and elsewhere, by Italic type (although Chace in his trans-
lation of the Rhind Papyrus uses bold-faced type). I do this since 1
have already usurped boldface for rubrication.

Finally I must explain why I have adopted the somewhat
ambiguous form of writing fractions with the numbers all on the
same line (e.g., 1/2, 2/3, etc.). The “equation program” included in
Microsoft Word, Version 6, by which fractions such as

1
E,-;-}é% may be written, is rather clumsy to use when there are

a great many fractions to be inserted in a normal expository text, or
in a text that is partly tabular and partly expository. For the same
reason I have not adopted the reciprocal form of writing unit frac-
tions with a bar over the denominator that replaces the unit numera-
tor, which has become so popular since its use by Neugebauer.
Hence I have fallen back on the old-fashioned forms mentioned
above. The ambiguity is reduced by the insertion of one or more
spaces after each fraction. I also must remind the reader that there
is no operational symbol for addition in the papyrus, and hence
when the text has a string of numbers and unit fractions when
working out the steps to solve each division of 2 by an odd number
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from 3 to 101, I have merely put a space between successively
added numbers and their fractions, as for example when giving the
table for solving the division of 2 by 13, I give the result of multi-
plying 13 by 1/8 as 1 1/2 1/8 (as it is in the papyrus) rather than as
1+1/2+1/8 or 1 1/2 + 1/8. This should not cause any difficulty to
the attentive reader, since almost all of the calculations are imme-
diately obvious.

Notes to the Introduction to Document IV.1

! See Facsimile of the Rhind Mathematical Papyrus (London, 1898), Preface.
Ct. T. Eric Peet, The Rhind Mathematical Papyrus: British Museum 10057 and
10058 (London, 1923), p. 2, and A B. Chace et al., The Rhind Mathematical
Papyrus, Vol. 1 (Oberlin, Ohio, 1927), p. 1.

2 G. Robins and C. Shute, The Rhind Mathematical Papyrus: an Ancient Egyp-
tian Text (London, 1987).

3Pect, op. cit. in note | above, pp. 2-3. Cf. Chace et al., Vol. 1, pp. 2-3.
“Robins and Shute, op. cit. in note 2 above, p. 6. See also the general descrip-
tion by Robins and Shute on pp. 10-11.

F. Lenormant, “Note relative 4 un papyrus égyptien contenant un fragment
d'un traité de géométric appliquée A I'arpentage,” Comptes rendus...de
1’Académie des Sciences, Vol. 65 (1867), p. 903. Given in its entirety in R.
Archibald’s bibliography published in Vol. 1 of the Chace edition of the Rhind
Papyrus, p. 135. The note is quite brief and general. It speaks ouly of the sec-
tion on the determination of arcas and the volume of a pyramid (i.c., the geo-
metric problems later numbered 48-60).

S Birch, “Geometric Papyrus,” ZAS, Vol. 6 (1868), pp. 108-10. Birch’s de-
scription is a much better estimate of the papyrus’ contents. Thus he says: “It is
a treatisc on geometry, mensuration and arithmetic combined, the geometric
problems being treated arithmetically and not abstractly as by the geometricians
of the Alexandrian school.... The Rhind Papyrus...contains a series of proposi-
tions relative to values or quantitics as they may be called treated arithmeti-
cally, each case being a proposition considered separately, the dimension of
each square, circle, triangle or pyramid to be copied being given scparately and
the area or contents superficial or solid thereby calculated, the object being to
determine the values or quantities. For the value of ficlds the author of the
treatise uses the isosceles triangie and the trapezoids into which it is susceptible
of division by drawing parallel lines to the base. But besides the resolution of
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geometric problems, others of a nature more purely arithmetical are also given
so that the treatise in reality is that of applied arithmetic. There is nothing in
the whole treatisc at all like the abstract geometry of the Alexandrian School.”
"HK. Brugsch, “Uber den mathematischen Papyrus un britischen Museum zu
London,” ZAS, Vol. 12 (1874), pp. 147-49.
® A. Eiscnlohr, “Berichtung,” ZAS, Vol. 13 (1875), pp. 26-29.
® Ein mathematisches Handbuch der aiten Agypter (Papyrus Rhind des British
Museum) abersetzt und erklart (Leipzig, 1877). Vol. 1 is a translation and
commentary; Vol. 2 consists of Tafeln, i.c., plates, of the hieratic text from a
so~called “facsimile” supplied to him by the British Muscum. For the tangled
history of this edition and its comparison to the facsimile edition published by
the Museum in 1898 (see note 1 above) consult the review by F.L1. Griffith in
Orientalisiische Litteratur-Zeitung, Vol. 2 (1899), cols. 116-17.

' Griffith, “The Rhind Mathematical Papyrus,” PSBA, Vol. 13 (1891), pp. 328-
32; Vol. 14 (1891), pp. 26-31; Vol. 16 (1894), pp. 164-73, 201-08, and 230-48.
Consult also Griffith's “Notes on Egyptian Weights and Measures,” PSBA, Vol.
14, 1892, pp. 403-50; Vol. 15 (1893), pp. 301-15, The relevance of the latter
study for the Rhind Papyrus arises from the fact that there are 44 problems in
the papyrus in which weights and measures are referred to, and, as Archibald
mentions in his bibliography (in Volume I of Chace's edition specified in note
1, p. 154), Griffith considers all of these. Fiually, see Griffith’s review
(mentioned in the preceding note) of the “facsimile™ editions of the Rhind Pa-
F_vrus published by Eisenlohr and the British Museum.

YJEA, Vol, 12 (1926), p. 123, full review pp. 123-37,

12 Hultsch, “Die Elemente der agyptischen Theilungsrechnung. Erste Abhand-
lung,” Abhandlung der philologisch-hisiorischen Classe der koniglich-
sachsischen Gesellschaft der Wissenschafi, Vol. 17, no. 1 (1895), 192 pp. The
second part was never published, though another paper appeared in 1901: F.
Hultsch, “Neue Beitrige zur agyptischen Teilungsrechnung,” Bibliotheca
Mathematica, Series 3, Vol. 2 (1901), pp. 177-84,
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DOCUMENT 1V.1

The Rhind Mathematical Papyrus

Accurate reckoning [or Rules for reckoning, ie.,] for
inquiring into things, and the knowledge of all things, myster-
ies....all secrets.’ This book was copied in regnal year 33, month 4
of Akhet, [under the majesty of the] King of [Upper and] Lower
Egypt, Awserre’, given life, from an ancient copy made in the time
of the King of Upper [and Lower] Egypt, [Nym)atre.® The scribe
Ahmose writes this copy.

[TABLE OF DIVISIONS OF TWO BY THE ODD NUMBERS 3-101]

[2 divided by 3]*
Call 2 out of 3 [ i.e., Get 2 by operating on 3).° 2/3 [of 3 is] 2.

[2 divided by] 5
173 [of 5is]) 1 2/3, 1/15 [of 5 is] 1/3.
Procedure [$$mt, i.e., Working Out]:®

1 5
23 3183
V13 123
\ 11518
[2 divided by 7]’
1/4[of 7is] 1 1/2 1/4, 1/28 [of 7 is] 1/4.
1 7
12 311 1 7
\1/4 1121/ 2 14
\4 28 174 4 28
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[2 divided by 9]
1/6 [of 9is ] 1 1/2, 1/18 [of 9 is] 1/2.
1 9
23 6
13 3
\1/6 1172
\[2 1]8 112,
[2 divided by 11]
1/6 [of 11is] 12/3 1/6, 1/66 [of 11 is] 1/6.
n n
23 713 m 1
13 3283 n2 212

\1/6 123 1/6] [\4 a4
(Total] 6 66 1/6.

[2 divided by 13]
1/8 [of 13 is] 1 1/2 1/8, 1/52 [of 13 is] 1/4, 1/104 [of 13 is] 1/8.

1 103)

12 612

/4 314

\1/8 1172158

\4 52 1/4

\8 104 1/8.

[2 divided by 15]
1/10 [of 15 is] 1 1/2, 1/30 [of 15 is) 1/2.
115
\1/10 1172
\130 12,

[2 divided by 17]
Call 2 out of 17 [i.e., Get 2 by operating on 17].
1712 [of 17is] 1 1/3 1/12, 1/51 [of 17 is] 1/3, 1/68 [of 17 is] 1/4.
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Procedure;
1 17
23 11183
113 523 \1 17
116 2112173 \2 34
\1/12 11/41/6 [Total:}* 3 51 173
Remainder’ 1/3 1/4 4 68 1/4.

[2 divided by 19]
1/12 [of 19 is] 1 1/2 1/12, 1/76 [of 19 is]1/4, 1/114 [of 19 is] 1/6

1 19

2/3 1223 1 19

173 61/3 2 38

1/6 31/6 4 76 1/4

\1/12 11/21/12 Remainder 1/6
Remainder 1/4 1/6

1 19
\2 38
\4 76
Total 6 114 1/6.
[2 divided by 21]
1/14[of 21 is] 1 1/2, 1/42[of21is] 1/2
1 21
\2/3 14 1172
\2 42 1/2.
[2 divided by 23]
1/12 [of 23 is] 1 2/3 1/4, 1/276 [of 23 is] 1/12.
1 23
213 151/3 1 23
173 723 \10 230
1/6 312183 \2 46

\1/12  11721/41/6 Total [12] 276  1/12.
Remainder 1/12
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[2 divided by 25]
1/15 [of 25 is] 1 2/3, 1/75 [of 25 is] 173.
1 25
115 128
\3 75 173,

[2 divided by 27]
118 [of 27 is] 1 1/2, 1/54 [of 27 is] 1/2.
1 27
\23 18 112
\2 sS4 12,

[2 divided by 29]
Call 2 out of 29 [i.e., Get 2 by operating
1724 [of 29 is] 1 1/6 1/24, 1/58 [of 29
1/6, 1/232[of 29 is] 1/8.

DOCUMENT IV.1: RMP

on 29).
is] 1/2, 1/174 [of 29 is]

Procedure'”:
1 (29
\1/24 11/6 1/24
\2 58 172
\6 174 1/6
\8 232 1/8.
[2 divided by] 31
1720 [of 31 is] 1 1/2 1/20, 1/124 [of 31 is] 1/4, 1/158 [of 31 is]
1/5.
1 (31
\ 1/20 11/21/20
\4 124 1/4
\S 155 1/5.
[2 divided] 33

1/22 [of 33 is] 1 1/2, 1/66 [of 33 is] 1/2.
§ 33) [cont.]
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\2/3 22 1172
\2 66 112,

[2 divided by] 35
1/30 [of 35 is] 1 1/6, 1/42 [of 35 is) 2/3 1/6.
6 7 st

[2 times 1/35 is 1/30 1/42. For 1/35 applied to 210 gives 6; and 2
times 6 is 12, or 7 and 5, which are 1/30 and 1/42 of 210.]

[ 35)
\130  11/6
\1/42 2/3 1/6.

[2 divided by 37]
1/24 [of 37is] 1 1/2 1/24, 1/111 [of 37 is] 1/3, 1/296 [of 37 is]
1/8.

1 37
23 24283 V137
173 12173 \2 74

1/6 61/6 Total 3 111 13
1/12 31/12 Remainder 1/8
\1/24 11/21/24 1 37

Remainder 1/31/8 2 74
4 148
8 29 178
[2 divided by] 39
1/26 [of 39is] 1 1/2, 1/78 [of 39 is] 1/2.
[ 39)
\23 26 112
\2 78 1/2.
[2 divided by 41]

Call 2 out of 41 [i.e., Get 2 by operating on 41].
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1/24 [of 41 is] 1 2/3 1124, 17246 [of 41 is] 1/6, 1/328 [of 41 is)

1/8.
Procedure:

0 41]

2/3 27183 1 41

173 13213 \2 82

1/6 62/31/6 \4 164

1/12 3131/12 Total: 6 246 1/6
\1/24 12/3 1/24 8 328 1/8.

Remainder 1/6 1/8

[2 divided by] 43
1/42 [of 43 is] 1 1/42, 1/86 [of 43 is] 1/2, 1/129 [of 43] is 1/3,
1/301 [of 43 is] 1/7.
[ 43)
Find (gm) \ 1/42 11/42
\2 86 172
\3 129 1/3
\7 301 /7.

[2 divided by] 45
1/30 [of 45 is] 1 1/2, 1/90 [of 45] is 1/2.
[ 45
\23 30 1172
\2 90 12,

[2 divided by] 47
1/30 [of 47 is] 1 1/2 1/15, 1/141 [of 47 is] 1/3, 1/470 [of 47 is]

1/10.
n 47
Find 1530 11221115
\3 141 173
\10 470 1/10.

[2 divided by] 49 [cont.]
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1/28 [of 49 is] 1 1/2 1/4, 1/196 [of 49 is] 1/4.
(1 49)

Find \1/28 1121/
\4 196 1/4.

[2 divided by] 51

1/34 [of 51s] 1 1/2, 1/102 [of 51 is 1/2).
oo osn
\23 34 1172
V2102 172,

[2 divided by 53]

Call 2 out 53.

1/30 [of 53 is] 1 2/3 1/10, 1/318 [of 53 is] 1/6, 1/79S [of 53 is]
1/15.

Procedure:
1 53]
Find \1/30 12/31/10 1 53
\6 318 1/6 \10 530
Remainder 1/15 \'S 265
Total 15 795 115,
[2 divided by] 55
1/30 [of 55 is] 1 2/3 1/6, 1/330 [of 55 is] 1/6.
1 55)
Find \1/30 12/31/6
\6 330 1/6.
[2 divided by] 57
1/38 [of 57 is] 1 1/2, 1/114 [of 57 is] 1/2.
} 57]
\2/3 38 1172
\2 114 12,
[2 divided by] 59
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1/36 [of 59 is] 1 1/2 1/12 1/18, 1/236 [of 59 is] 1/4, 1/531 [of 59

is] 1/9.
§! 59]
Find \1/36 11/21/121/18
\4 236 1/4
\9 531 19,
[2 divided by] 61

1/40 [of 61 is] 1 1/2 1/40, 1/244 [of 61 is] 1/4, 1/488 [of 61 is]
118, 1/610 [of 61 is] 1/10.

0 61]
Find \1/40 11/2 1/40
\4 244 1/4
\8 488 1/8
\10 610 1/10.
[2 divided by] 63
1/42 [of 63 i8] 1 1/2, 1/126 [of 63 is] 1/2.
0 63]
\2/3 42 112
\2 126 1/2.
[2 divided by 65]
Call 2 out of 65.
1/39 [of 65 is] 1 2/3, 1/195 [of 65 is] 1/3.
Procedure;
0 65]
Find \1/39 1213
\3 195 1/3.
[2 divided by] 67
1/40 [of 67 is] 1 1/2 1/8 1/20, 1/335 [of 67 is] 1/5, 1/536 [of 67
is] 1/8.
[ 67]

Find \1/40  11/2 1/8 1/20 [cont.]
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\S 335 /s
\8 536 1/8.
[2 divided by] 69
1/46 [of 69 is] 1 1/2, 1/138 [of 69 is] 1/2.
[ 69]
\23 46 112
\2 138 122.
[2 divided by] 71
1/40 [of 71 is] 1 1/2 1/4 1/40, 1/568 [of 71 is] 1/8, 1/710 [of 71
is] 1/10.
n o m
Find \1/40 11/2 1/4 1/40
\8 568 /8
\10 710 1/10.
[2 divided by] 73

1/60 [of 73 is] 1 1/6 1/20, 1/219 [of 73 is] 173, 1/292 [of 73 is)
1/4, 1/365 [of 73 is] 1/5.

0 73]
Find\ 1/60 11/6 1/20
\3 219 173
\4 292 1/4
\S 365 1/5.
[2 divided by] 75
1/50 [of 75 is] 1 1/2, 1/150 [of 75 is] 1/2,
0 75]
\213 50 1122
\2 150 12.
[2 divided by 77]
Call 2 out of 77.

1/44 [of 77is] 1 1/2 1/4, 1/308 [of 77] is 1/4.
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Procedure:
0 M
Find \1/44 11/21/4
\4 3[08) 1/4.

[2 divided by] 79
1/60 [of 79 is] 1 1/4 1/15, 1/237 [of 79 is] 1/3, 1/316 [of 79 is]
1/4, 1/790 [of 79 is] 1/10.

[ 79)
Find \1/60 11/41/15
\3 237 13
\4 316 1/4
\10 790 1/10.
[2 divided by] 81
1/54 [of 81 is] 1 1/2, 1/162 [of 81 is] 1/2.
[ 81]
\23 54 1112
\2 162 122,

[2 divided by] 63 (! but should be 83)
1/60 [of 83 is] 1 1/3 1/20, 1/332 [of 83 is] 1/4, 1/415 [of 83 is)
1/5, 1/498 [of 83 is] 1/6.

n 83
Find \1/60  11/31/20
4 332 1/4
\S 415 /s
\6 498 1/6.
[2 divided by] 85
1/51 [of 85 is] 1 2/3, 1/255 [of 85 is] 1/3.
1 85
Find \1/51 1253
\3 255 13.
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[2 divided by 87]
1/58 [of 87 is] 1 1/2, 1/174 [of 87 is] 1/2.
1 87
\23 S8 (12
\2 174 112,

[2 divided by 89] "

Call 2 out of 89.

1/60 [of 89 is] [1 1/3] 1/10 1/20, 1/356 [of 89 is] 1/4, 1/534 [of
89 is] 1/6, 1/890 [of 89 is] 1/10.

Procedure:
1 89]
Find \ 1/60 11/3 1/10 1/20
\4 356 1/4
\6 534 1/6
\10 890 1/10.
[2 divided by] 91
1770 [of 91 is] 1 1/5 1/10, 1/130 [of 91 is] 2/3 1/30.
1 91]

Find\1/70 11/51/10
Find\ 1/130  2/3 1/30.

[2 divided by] [9]3
1/62 [of 93 is] 1 1/2, 1/186 [of 93 is] 1/2.
1 93]
\23 62 1122
\2 186 172,
[2 divided by] 95

1/60 [of 95 is] 1 1/2 1/12, 1/380 [of 95 is] 1/4, 1/570 [of 95 is)
1/6.

n 9
Find\1/60 112112
\4 380 1/4
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\6 570 1/6.

[2 divided by] 97
1/56 [of 97 is] 1 1/2 1/8 1/14 1/28, 1/679 [of 97 is) 1/7, 1/776 [of
97 is] 1/8.
n 97
Find \1/56 11/21/81/141/28
\7 679 177
\8 776 1/8.

[2 divided by] 99

1/66 [of 99 is] 1 1/2, 1/198 [of 99 is] 1/2.
n 99]

Find\ 23 66 1172
\2 198 1/2.

[2 divided by 101]

[Call 2 out of 101.]

1/101 [of 101 is] 1, 1/202 [of 101 is] 1/2, 1/303 [of 101 is] 1/3,
1/606 [of 101 is] 1/6.

Procedure:
AR 101 1]
\2 202 172
\3 303 173
\6 606 1/6.

[TABLE OF DIVISION BY 10 AND PROBLEMS 1-6]

[Table of Division by 10]"*
[1 divided by 10 yields] 1/10
[2 divided by 10 yields] 1/5
[3 divided by 10 yields] 1/5 1/10
[4 divided by 10 yields] 1/3 1/15
[5 divided by 10 yields] 1/2
[6 divided by 10 yields] 1/2 1/10 fcont.]
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(7 divided by 10 yields] 2/3 1/30
(8 divided by 10 yields] 2/3 1/10 1/30
[9 divided by 10 yields] 2/3 1/5 1/30.

[Problems 1-6: Divisions of Loaves of Bread among 10 Men]

[Problem 1]
Example of Dividing (tp n psH™ 1 loaf (19 among 10 men. Do
the multiplication (irfu{k] wh-[tp]) of 1/10 times 10 [to get 1 loaf].
The procedure [/it. doing (irf)] is as follows:

(1 1/10
\2 /s
4 173 1/15)

\8 2/31/101/30
Total: 1 [loaf], which is the same [i.e., the correct
total for 10 men after each man receives 1/10 of it].

[Problem 2]
Dividing [2] loaves among [10 men]. Do the multiplication [of
1/5 times 10).
The procedure is as follows: (irt my hpr):
N 1/5]
\2 173 115
(4] 2/3 1/10 1/30
\8 11/31/51/15
Total: 2 [loaves), which is [the correct total for 10
men after each man receives 1/5 of the total).

[Problem 3]
Dividing 6 loaves among [10] men. Do the multiplication of

[1/2] 1/10 times 10.
The procedure is as follows: [ 1 1/2] 1/10
n2 1]1/5
[4 2] 113 1/15
\8 4[2/3 1/10] 1130
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Total: 6 [loaves), which is [the correct total for 10
men after each man receives 1/2 1/10 of it].

[Problem 4] **
Dividing 7 loaves among 10 men. Do the multiplication of 2/3
1/30 times 10; the result is 7.
The procedure is as follows: [1] 2/3 1/30]
\[2 11173 1115
4 22/3 1710 1730
\8 51/21/10
Total: 7 loaves, which is [the correct total for 10 men
after each man receives 2/3 1/30 of it].

[Problem 5]
Divide 8 loaves among 10 men. Do the multiplication of 2/3 1/10

1/30 times 10; the result is 8.
[The procedure is] as follows; 1 2/31/10 130

\2  112[1/10

4 31/5)
\8 61/3 1/15
Total: 8 loaves, which is correct.

[Problem 6]
Divide 9 loaves among 10 men. Do the multiplication of 2/3 1/5
1/30 times 10.
The procedure is as follows: 1 2/31/51/30

\2  12/31/101/30

4 312110
\8 715
Total: 9 loaves, which is correct.

[PROBLEMS 7-20: MULTIPLICATION OF CERTAIN FRACTIONAL
EXPRESSIONS]'®

[Problem 7][cont.]
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[Multiply 1/4 1/28 by 1 1/2 1/4.)
Example of completion (tp n skmt):
1 1/4 1/28 [as parts of 28 these are] 7 [and] 1
1/2  1/8 1/56 [as parts of 28 these are] 3 1/2 [and] 172
1/4  1/16 1/112 [as parts of 28 these are] 1 1/2 1/4 [and]
1/4
Total:  1/2 [since as a part of 28 this is 14].

[Problem 7B}
[Multiply 1/4 1/28 by 1 1/2 1/4.]

1 1741/ 28
172 1/8 1/56
1/4 1/16 1/112 [as parts of 28 these are] 1 1/2 1/4 [and]
1/4
Total: 1/2.
[Problem 8]

[Multiply 1/4 by 1 2/3 1/3.]
1 1/4 [as a part of 18 thisis] 4 1/2
23 1/6 [as a part of 18 this is] 3
1/3 1/12 [as a part of 18 thisis] 1 1/2
Total:  1/2 [since as a part of 18 thisis] 9.

[Problem 9]

[Multiply 1/2 1/14 by 1 1/2 1/4.]
1 1/2114
112 1/4 1/28
14 1/81/56

Total: 1.
[Problem 10]'
[Multiply 174 1/28 by 1 1/2 1/4.]
1 1/4 1/28
12 17
174 114
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Total: 1/2.
[Problem 11]
[Multiply 1/7 by 1 1/2 1/4.]
1 1/7
172 1/14
/4 1128
Total:  1/4.
[Problem 12]
[Multiply 1/14 by 1 1/2 1/4.]
1 1/14
172 1728
1/4  1/56
Total:  1/8.
[Problem 13]

[Multiply 1/16 1/112 by 1 1/2 1/4.]
1 1/16 1/112 [as parts of 28 these are] 1 1/2 1/4 {and]

1/4

1/2  1/32 1/224 [as parts of 28 these are] 1/2 1/4
1/8 [and]) 1/8

1/4  1/64 1/448 [as parts of 28 these are] 1/4 1/8 1/16
[and] 1/16

Total:  1/8 [since as part of 28 this is 3 1/2].

[Problem 14]
[Muttiply 1/28 by 1 1/2 1/4.]
1 1/28 [as a part of 28 this is] 1
1/2  1/56 [as a part of 28 thisis ] 1/2
1/4  1/112 [as a part of 28 this is] 1/4
Total:  1/16 [since as a part of 28 this is 1 1/2 1/4].

[Problem 15]'®
[Multiply 1/32 1/224 by 1 1/2 1/4.] fcont.]
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1 1/32 1/224 [as parts of 28 these are] 1/2 1/4 1/8

[and] 1/8
1/2  1/64 1/448 [as parts of 28 these are] 1/4 1/8 1/16
[and] 1/16
1/4 17128 1/896 [as parts of 28 these are] 1/8 1/16 1/32
[and] 1/32
Total: 1716 [since as a part of 28 this is 1 1/2 1/4].
[Problem 16]
[Multiply 1/2 by 1 2/3 1/3.]
1 172
23 11
173 1/6
Total: 1.
[Problem 17]
[Multiply 173 by 12/3 1/3]
1 173
23 1/6118
173 19
Total: 273
[Problem 18]
[Multiply 1/6 by 1 2/3 1/3.]
1 1/6
23 19
173 1/18
Total: 173
[Problem 19]

[Multnply 1/12by 12/3 1/3]
1/12 [as a part of 18 this is] 1 1/2
2/3 1/18 [as a part of 18 this is] 1
173 1/36 [as a part of 18 this is] 1/2
Total:  1/6 [since as a part of 18 this is 3].
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[Problem 20]
[Multiply 1/24 by 1 2/3 1/3.]
1 1/24 [as a part of 18 this is] 1/2 1/4
2/3  1/36 [as a part of 18 this is] 1/2
13 1/72 [as a part of 18 this is] 1/4
Total:  1/12 [since as a part of 18 thisis 1 1/2].

[PROBLEMS 21-23; PROBLEMS IN COMPLETION]

[Problem 21]
It is said to you: Complete 2/3 1/15 to 1.
[Applied to 15, 2/3 is] 10 [and 1/15is] 1.
The total is 11 and the remainder is 4.
Multiply 15 in order to find (i.e., get) 4.

1 15
1/10 112
\1/5 3
\ 1/15 1
Total: 4.
Therefore 1/5 and 1/15 is what is to be added to it [i.e., the given
number].
Example of Proof (tp n $yty)."”

Therefore 2/3 1/5 1/15 1/15 complete to (i.e., make) 1. For [when
applied to 15 these fractions are equal to the numbers] 10, 3, 1, 1
[which make 15].

[Problem 22]
Complete 2/3 1/30 to 1.
[Applied to 30, the 2/3 1/30 equals] 21.
The Total of the excess of it [i.e., 30 over 21]is 9.
Multiply 30 in order to find 9.
1 30
\1/10 3
\1/5 6 [cont.]
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Total: 9.
Therefore 1/5 1/10 is to be added to it [in order to make the com-
pletion].

Therefore the complete addition is of 2/3 1/5 1/10 1/30 to make 1,
[for applying them to 30, these fractions are equal to] 20, 6, 3, and
1 [making 30).

[Problem 23]

Complete 1/4 1/8 1/10 1/30 1/45 to 2/3.

[Applied to 45, these are equal to] 11 1/4,51/2 1/8,4 1/2,1 172,
and 1 [which require 6 1/8 more to make up 2/3 of 45, ie., 30,
and 6 1/8 is equal to 1/9 1/40 of 45).

Therefore 1/9 1/40 is what is to be added to it to make 2/3 [of 1]
since 1/4 1/8 1/9 1/10 1/30 1/40 1/45 and 1/3 make 1 [for applied
to 45, these fractions are equal to] 11 1/4,51/2 1/8, 5,4 1/2,1 172,
11/8,1,and 152

[PROBLEMS 24-29: QUANTITY (‘4) PROBLEMs?! ]

[Problem 24]
A quantity with 1/7 of it added to it becomes (hpr) 19.2 [What
is the quantity?]
[Assume 7.]
\1 7
\177 1
[Total: 8.]
[As many times as 8 must be multiplied to give 19, so many times
7 must be multiplied to give the required number.)

1 8
\2 16
12 4
\14 2
\1/8 1
[Total 2 1/4 1/8.)%
\1 21/41/8
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\2 41/21/4

\4 912
Do it as follows: The quantity [is] 16 1/2 1/8 [and its] 1/7 [is] 2 1/4
1/8. [Hence this checks out since the] Total [is] 19 [as originally
specified).

[Problem 25]
A quantity with 1/2 of it added to it becomes 16.** [What is the

Quantity?)

[Assume 2.]
\1 2
\12 1
Total: 3.

[As many times as 3 must be multiplied to give 16, so many times
2 must be multiplied to give the required number.]

\1 3
2 6
\4 12
23 2
\173 1
Total: 5 1/3.
1 5173
\2 102/3

Do it as follows: The quantity [is] 10 2/3, [and its] 1/2 is 5 1/3.
[Hence this checks out since the] Total [is] 16 [as originally speci-
fied).

[Problem 26]
A quantity with 1/4 of it added to it becomes 15.%
[Assume 4.] [That is] multiply 4, making 1/4, namely 1, [so that
the] Total is 5 [proceeding in the usual manner:
V1 4
\1/4 1
Total:  5). fcont.]
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[As many times as 5 must be multiplied to make 15, so many times
4 must be multiplied to give the required number.]
Operate on S to find 15

\1 5
\2 10
Total: 3.
Multiply 3 times 4.
1 3
2 6
\4 12
This becomes 12. [And find its 1/4:]
1 12
\1/4 3
Total: 15.

[Hence] the quantity is 12 and its 1/4 is 3 and the total is 15.
[This checks out since the sum agrees with what was originally
specified.]

[Problem 27]
A quantity with 1/5 of it added to it becomes 21.% [What is the
quantity?]
[Assume 5.]
\l 5
\1/5 1
Total: 6.

[As many times as 6 must be multiplied to give 21, so many times
5 must be multiplied to give the required number.]

\1 6
\2 12
\12 3
Total: 3 1/2.
\1 312
2 7
\4 14.

The quantity is 17 1/2 and 1/5 of it is 3 1/2 and the total is 21.
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(This checks out since the sum agrees with what was originally
specified.]

[Problem 28]

[If a quantity] and 2/3 of it are added together, and from the
sum is subtracted 1/3 of the sum, 10 remains.”’ [What is the
quantity?] Make 1/10 of 10; this becomes 1. Subtract 1 from 10
and the remainder is 9 [which is the desired quantity]. 2/3 of 9 is
6, which added to 9 makes 15. 1/3 of it (15) is S, and 1/3 of 15
taken away from 15 leaves 10. Do it in the following way.”

[Problem 29]
[A quantity and its 2/3 are added together, and 1/3 of the sum
is added; then 1/3 of this sum is taken and the result is 10. What

is the quantity?]®
\1 10
\1/4 212
\/io 1
Total (i.e., quantity) [is] 13 1/2.
23 9
Total: 22 1/2.
173 712
Total: 30
213 20
13 10.

[PROBLEMS 30-34. DIVISIONS BY FRACTIONAL EXPRESSIONS™ ]

[Problem 30]
If the scribe (s5) says to you “What is the quantity of which 2/3
and 1/10 will make 10,! let him hear [the following:]
Multiply 2/3 1/10 [by multipliers] in order to find [i.e., so as to
get] 10.
\1 231110
2 11315 jeont]
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\4 31/15
\8 6 1/10 1/30
Total: 13 1/30 [still remains in order to produce 10].*

The making (irt) of 1/30 times 1/23 for the finding of 2/3 1/10.
The total is the [desired] quantity so stated; [it is] 13 1/23.

1 13 1/23
\2/3 8 2/3 1/46 1/138
\ 1/10 11/51/10 1/230
Total: 10.
[Problem 31]

A quantity (%h°), 2/3 of it, 1/2 of it, and 1/7 of it added to-
gether become 33.° [What is the quantity?)
[Multiply 1 2/3 1/2 1/7 so as to get 33.]*

1 121312177
\2 41/31/41/28
\4 91/6 1/14
\8 181/3 1/7
12 1/21/3 1/4 1/14
\1/4 1/41/6 1/8 1/28

The total [of multipliers is 14 1/4 and that multiplied by 1 2/3 1/2
1/7] is 32 1/2 and a remainder of 1/2 [which is equal to the fractions
1/7, 1/8, 1/14, 1/28, and 1/28 plus an additional product to be de-
termined).

1/7, 1/8, 1/14, 1/28, 1/28 [taken as parts of 42 are]
6,5 1/4, 3, 11/2, 1 1/2, [which make in all] 17 1/4. [But we
still require 3 + 1/2 + 1/4 more to make] 21, [which is] 1/2 [of
42).3 [Then apply 1 2/3 1/2 1/7 to 42 as follows:]

\1 42
V23 28
\12 21
\ /7 6
Total: 99 [should be 971].

[Since the total of the products of these multipliers applied to 42 is
97, hence 1/42 of 42, which is 1, will be 1/97 of the total. And
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hence 3 1/2 1/4 will be 3 1/2 1/4 times as much. Hence to find the
fractional multipliers that will produce that final product, we need
to find the missing fractional multipliers which will add up to 3 1/2
1/4. This is not presented as a straight multiplication but by listing
the desired multipliers as applied to 42 in order to find the equiva-
lent fractions of 97:]

\1/97 1/42 [or] 1 [as a part of 42]
\1/56 1/679 1/776  1/21 [or] 2 [as a part of 42]
\1/194 1/84 [or] 1/2 [as a part of 42]
\1/388 1/168 [or] 1/4 [as a part of 42]

[Hence, after arranging the fractions in decreasing order, the total
unknown quantity sought is 14 1/4 1/56 1/97 1/194 1/388 1/679
1/776, which when multiplied by 1 2/3 1/2 1/7 makes the] Total 33
[as given in the enunciation of the problem].

[Problem 32]
A quantity, 1/3 of it, and 1/4 of it added together become 2.*
[What is the quantity?)
[Multiply 1 1/3 1/4 so as to get 2.]7
1 1 1/3 1/4 [as applied to 144 is] 228

\23 1118 (ditto) 152
\13 12136 [ditto] 76
\1/6  1/4y72  [ditto) 38
\1/12  1/81/144  [ditto) 19
\1/228  1/144 (ditto) 1
\1/114 172 (ditto] 2.

[Adding together the multipliers we find that the] total [of the re-
quired quantity is] 1 1/6 1/12 1/114 1/228.
[The number 144 used in the above table was determined as fol-

lows:]**
1 12
2 24
\4 48
\8 96

Total: 144. [cont.]
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[The following calculations result when we relate our fractions to

144):
\1 144
\13 48
\1/4 36
Total 228.

[The first four numbers in the third column of the initial table which
are opposite the checked fractions and which express the parts of 1
1/3 1/4 as applied to 144 add up to 285. But 3 more parts are
needed to total 288, which is 2 times 144. Hence the last two items
in that list of numbers that add to 3 are opposite the last two
checked fractional multipliers completing the desired unknown
quantity; these fractions being 1/228 and 1/114. Thus the complete
unknown multiplier, the so-called “quantity” or aha which is the
objective of the problem is that stated at the end of the first table: 1
1/6 1/12 1/114 1/228. To test that solution the author substitutes
this value of the unknown in the enunciation of the problem to get
2]
Example of proof (tp n $yty)

\1 11/61/12 1/114 1/228

273 2/31/9 1/18 1/171 1/342)

\1/3 1/3 1/18 1/36 1/342 1/684

a2 1/2 1/12 1/24 1/228 1/456)

\1/4 1/4 1/24 1/48 1/456 1/912.
The total is 1 1/2 1/4 [and a series of smaller fractions. 1 1/2 1/4
taken from 2 leaves] a remainder of 1/4. [Apply the smaller frac-
tions to 912. Now the smaller fractions are:]
1/12, 1/114, 1/228, 1/18, 1/36, 1/342, 1/684, 1/24, 1/48, 1/456, and
1/912; [as parts of 912, they are equal to:]
76, 8, 4, 50 2/3, 25 1/3, 2 2/3, 1 1/3, 38, 19, 2, and 1, the total [of
which] is 228, i.e., 1/4 of 912. For

1 912
112 456
1/4 228
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[Problem 33]
A quantity, 2/3 of it, 1/2 of it, and 1/7 of it, added together be-

come 37.” [What is the quantity?)
[Multiply 1 2/3 1/2 1/7 so as to get 37.]%

1 12312177
2 41/31/41/28
4 91/61/14

8 181/3 177

\16 36 2/3 1/4 1/28 [and applying these three fractions
to 42 we have:] 28,101/2,11/2.

[ 4
\23 28

12 21
\1/4 1012
\128 112

The total [of the checked products] is 40; the remainder is 2, [or
1/21 of 42).
[Since 1 2/3 1/2 1/7 applied to 42 gives 97,*' we note further that:)

1/97 1/42 [or] 1 [as a part of 42]

\1/56 1/679 1/776 1/ 21[or] 2 [as a part of 42].
[This last number, 1/21, with the product already obtained gives] a
total of 37 [which is equal to the number specified in the enuncia-
tion of the problem. So the quantity sought is 16 1/56 1/679
1/776.]
Example of proof (with the values of the small fractions applied

to 5432 expressed in bold-faced numbers below the fractions).

1 16 1/56 1/679 1/776

97 8 7
23 1023 1/84 1/1358 1/4074 1/1164
6423 4 113 423
172 8 1/112 1/1358 1/1552
48112 4 3R
177 21/41/28 1/392 1/4753 1/5432
12(,13)121/41/14128 1177 1.

[The whole numbers and larger fractions add up to:] [cont.]

147



ANCIENT EGYPTIAN SCIENCE

36 23 1/4 1/28 and the remainder to 1/28 1/84.
3621 1/3 1358 194 194 64273
[with the fractions applied to 5432 again given in boldface num-
bers]. [For regarding the larger fractions:]

1 5432

23 3621183

112 2716

1/4 1358

1/28 194
Total: 5173 1/3. And [that of] the remainder is 258 2/3.
[Problem 34]

A quantity, 1/2 of it, and 1/4 of it, added together, become
10. [What is the quantity?)
[Multiply 1 1/2 1/4 so as to get 10.]

\1 11/21/4
2 312

\4 7

\1/7 1/4
174128 12

\1/21/4 1.

The total is the required quantity: 5 1/2 1/7 1/14.
Example of proof:
\1 5121/7114
\1/2 21/21/4 114 128
\1/4 11/4 1/8 1/28 1/56.
The total [of whole numbers and simpler fractions (powers of 1/2)]
is 9 1/2 1/8; the remainder is 1/4 1/8. [The rest of the fractions
follow, and their applications to 56 are given in boldface below
them:]
1/7 1/14 1/14 1/28 1/28 1/56
8 4 4 2 2 1 and the total [of these last
numbers is 21]. [Furthermore]1/4 [applied to 56] is 14 and
1/8 is 7. [Their total is also 21. Hence the result obtained is
correct.]
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[PROBLEMS 35-38: DIVISION OF A HEQAT* ]

[Problem 35]

I go down three times into the heqat-measure (hk3r), 1/3 of me is
added to me, I retum filled [i.e., having filled the heqat-measure].
Then what says this?*

The Procedure is as follows: [Assume 1. Multiplying by 3 1/3 we
have]:

\1 1
\2 2
\173 1/3
Total: 314.
Call 1 out of 3 1/3.
1 313
\ 1710 173
\ 1/5 23
Total: 1.
[The answer is 1/5 1/10.]
Example of proof:
\1 1/5 1/10
\2 1/21/10
\173 1/10
Total: 1

[Expressing the result of the fractional parts 1/10 and 1/5 in r (i.e.,

<=, “the part”), sometimes transliterated re or ro, of which the
value is 1/320 part of a heqat. Like Chace, I use “ro” everywhere.]

1 320

\1710 32

\1/5 64
Total: 96.

Example of proof:

\1 96

\2 192

\1/3 32 [fcont]
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Total: 320.

[As expressed in Horus-eye fractions of a heqat (given here in
Italics), namely, the fractions whose denominators were the powers
of 2 down to 1/64 and which were expressed by special nota-
tions,* the result makes of grain //4 1/32 1/64 heqat and 1 ro.)

[Proofin the] making of grain [i.e., in corn-measure using the Ho-
rus-eye form:]
\1 1/4 1/32 1/64 [heqat and] 1 [ro]
\2 172 1/16 1/32 [heqat and] 2 [ro)
\1/3  I/161/32  [heqat and] 2 [ro}
Total: a heqat [i.e., 1 heqgat).

[Problem 36]

I go down three times [into the heqat-measure’ J; 1/3 of me and
1/5 of me are added to me, and I return having filled the meas-
ure.*” What is the quantity (“4°) that says this?

[Assume 1. Multiplying by 3 1/3 1/S we have]

1 1
1 1
1 1
173 173
1/5 1/5

Total: 31/31/5.
[Get 1 by operating on 3 1/3 1/5. Apply this to 30; it makes 106.
Multiply 106 so as to get 30.]
1 106
1/2 53
\1/4 26172
\1/106 1
\1/53 2
\1212 12
Total: [30, i.e., the whole of 30, or] 1.
[The answer is 1/4 1/53 1/106 1/212.]
[Proof:]
1 1/4 1/53 1/106 1/212
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2 1/2 1/30 1/318 1/795 1/53 1/106
173 1/12 1/159 1/318 1/636
1/5 1/20 1/265 1/530 1/1060.

[The larger fractions are 1/2 and 1/4. In order to get 1 we should
have for the sum of the remaining fractions 1/4. To get this we
apply the smaller fractions to 1060, and beneath these fractions they
are written as parts of 1060 in red in the papyrus and thus here in

boldface type:]
1/53  1/106 1/212
20 10 L3 [or in total] 35

1/30 17318 1/795 1/53 1/106
351/3 313 11/3 20 10 [or in total] 70
1/12 1/159 1/318 1/636

3813 623 313 123 [or in total] 100
1/20 1/265  1/530 1/1060
53 4 2 1 [or in total] 60*°

[Grand total of parts:] 265%
[which is] 1/4 [of 1060, for]

1 1060
1/2 530
1/4 265
1/4 265
Total:  1060.
[Problem 37]"'

I go down three times into the heqat measure, 1/3 of me is
added to me, 1/3 of 1/3 of me is added to me, and 1/9 of me is
added to me; I return having filled the heqat-measure. Then what
is it that says this? You shall hear [the answer].

[Assume 1. Multiplying by the given expression we have]

1 1
2 2

13 13
130f13 19

1/9 1/9 [cont.]
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Total: 3121/18.
Call 1 out of 3 1/2 1/18.

1 312118
1/2 11/21/41/36

\1/4 121/41/8 1/712
1/8 1/4 1/8 1/16 1/144
1/16 1/8 1/16 1/32 1/288

\1/32 1/16 1/32 1/64 1/576

Total: 1 [for if we] add

1/2 1/4 1/8 1/72 1/16 1/32 1/64 1/576 [we get 1. Now]
8 36 18 9 1
[are the values of the smaller fractions under which they are written
when taken as parts of 576. These parts] total 72 [which is) 1/8 [of
576. Therefore the answer is 1/4 1/32.]

Example of Proof:

1 1/4 1/32

2 1/2 1/16

173 1/12 1/96

173 of 1/3 1/36 1/288

1/9 1/36 1/288.
Total: 1 [for if we] add

1/2 1/4 1/32 1/16 1/12 1/96 1/36 1/288 1/36 1/288 [they equal 1.
Now]
9 18 24 3 8 1 8 1

[are the values of those smaller fractions below which they are
written when they are taken as parts of 288. These parts] total 72
[which is] 1/4 [of 288].

[We can, as in Problem 35, express the result in ro:]

Total:

(1] 320
12 160
\1/4 80
118 40
1116 20
\1/32 10
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Total: 90.
Example of proof:
\1 90
\2 180
\13 30
\130of1/3 10
\1/9 10
Total: 320

[It amounts in grain to //4 1/32 heqat.]
[The proof] produced in the grain-measure or Horus-eye fractions

[noted in Italics:]

\1 1/4 1/32

\2 12 /16

\173 1/16 1/32

\13of 113 1/32

\1/9 1/32

Total: 1/21/8 1/4 1/8.
[Problem 38]*

I have gone down three times into the hegat-measure, 1/7 of
me is added to me. I return having filled the hegat-measure.
[What is it that says this?]

[Assume 1. Multiplying by the given expression we have]

1

\1
\2 2
\1/7 177
Total: 31
Call 1 out of 3 1/7.
1 3177

1/22 1/7 [for] 1/7 times 22 is 3 1/7
1711 1/4 1/28
1/6 1/66 1/21/14
Total: 1.
[Therefore the answer is 1/6 1/11 1/22 1/66.)
Example of proof: [cont.]
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1 1/6 1/11 1/22 1/66
2 1/2 1/11 1/33 1/66
177 1/22 [for] 1/22 of 7 is the expression

we have obtained.
[Expressing the result in ro:]
1 320
23 21318
173 106243
\1/6 53173

\1/11 29 1/11
\1/22 141/21/22
\ 1/66 42/3 1/6 1/66
Total: 101 2/3 1/11 1/22 1/66.
Example of proof [in ro]:
\1 101 2/3 1/11 1/22 1/66
\2 203 1/2 1/11 1/33 1/66
\1/7 141/21/22
Total: 1 [hegat, i.e., 320 ro]
Making of grain (ir n $§) [i.e,, its amount in grain, using the Ho-
rus-eye fractions in Italics and ros in Roman type]

1 1/4 1/16 [heqat] 1 2/3 1/11 1/22 1/66 [ro]
2 1/2 1/8 [hegat]) 3 1/2 1/11 1/33 1/66 [ro]
1/7 1732 [heqat] 4 1/2 1/22 [ro).
Total: 319 273 [ros for the larger portions; the smaller

fractions are] 1/11, 1/11, 1/22, 1/22, 1/33, 1/66, and 1/66. [They
total] 1/3, [for if we express them as parts of 66, they are succes-
sively:] 6, 6, 3, 3, 2, 1, and 1 [which total) 22 [and 22 is 1/3 of 66;
and so the parts in total are 319 2/3 plus 1/3, which make 320 ros,
or 1 heqgat].

[PROBLEMS 39-40: DIVISION OF LOAVES AND ARITHMETICAL
PROGRESSION]

[Problem 39]
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Example of making excess (tp n irt twnw) [or, of making the dif-
ference of share] when 100 loaves are for 10 men, SO for 6, and 50
for 4. What is the excess of shares 7%

[Multiply 4 so as to get 50.]
1 4
\10 40
\2 8
V172 2
Total: 12 1/2.
[Multiply 6 so as to get 50.]
1 6
2 12
4 24
\8 48
\173 2
Total: 8 1/3.

[Therefore each of the men in the group of 4 gets] 12 1/2 loaves
[and each of the men in the group of 6 gets] 8 1/3 [and the first
amount is listed 4 times and the second amount is listed 6 times).
The excess [of the share of each man in the group of 4 over the
share of each man in the group of 6] is 4 1/6.*

[Problem 40]

[Divide] 100 loaves among S men [in such a way that the shares
received will be in arithmetical progression and that] 1/7 of [the
sum of] the largest three shares is [equal to the sum of] the smallest
two. What is the [common] excess [or difference of the shares]?

The procedure is as follows, [if we assume first that] the excess
[or difference] is 5 1/2.* [Then the amounts that the five men re-
ceive are]

23,17 1/2, 12, 6 1/2, 1; total 60.

[As many times as is necessary to multiply 60 to make 100, so
many times must the terms noted above be multiplied to find the
correct terms of the series.] fcont.]
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\1 60
\2/3 40
Total: 1 2/3 100.

[Then] multiply [the above assumed terms] by 1 2/3 [as follows:]
23 it becomes 38 1/3
17 1/2 itbecomes 29 1/6
12 it becomes 20
6 1/2 itbecomes 102/31/6
1 itbecomes 1273
Total: 60 it becomes 100.
[And so the common excess or difference between any two terms
is91/6)

[PROBLEMS 41-46: PROBLEMS OF VOLUME]

[Problem 41]

Example of making (i.e., calculating the volume of a) round
(i.e., cylindrical) granary of [diameter] 9 and [height] 10.%

Take away 1/9 of 9, namely, 1; the remainder is 8. Multiply 8
times 8; it makes 64. Multiply 64 times 10; it makes 640 [cubic]
cubits. Add 1/2 of it to it; it makes 960: the calculation of [the
content of] it in khar (h3rw). Take 1/20 of 960, namely, 48. This
is what goes into it in [the number of hundreds of] quadruple-
heqats, (4-hk3), [i.e.,] in grains, 4800 hegats.

Method of reckoning it (ky n $Smtf).

1 8
2 16
4 32
\8 64.
1 64
\10 640
\1/2 320
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Total: 960

\1/10 96
\1/20 48.

[Problem 42]
[Find the volume of] a round [i.e., cylindrical] granary of
[base-diameter] 10 and [height] 10.

Take away 1/9 of 10, i.e, 1 1/9; the remainder is 8 2/3 1/6 1/18.
Multiply 8 2/3 1/6 1/18 times 8 2/3 1/6 1/18; it makes 79 1/108
1/324, Multiply 79 1/108 1/324 times 10; it makes 790 1/18 1/27
1/54 1/81 [cubic cubits]. Add 1/2 of it to it; it makes 1185 1/6 1/54,
[This is its content or volume in khar.] [We find that] 1/20 of it is
59 1/4 1/108. [Multiplying this times 100 heqat,] we find what
goes into this in quadruple heqat is, namely, 5925 hegat of
grains.”

Method of the reckoning of it:
1 82/31/6 118
2 172/3 1/9
4 3512118
\8 711/9

\2/3 52/31/6 1181127
13 22/31/6 1/12 1/36 1/54
\1/6 1173 1/12 1/24 1/72 1/108
\1/18 173 1/9 1/27 1/108 1/324
Total: 79 1/108 1/324.

1 79 1/108 1/324

10 7901/18 1/27 1/54 1/81

112 3951/36 1/54 1/108 1/162
Total: 1185 1/6 1/54

1/10 118 1/21/54

1/20  591/4 1/108.

[Problem 43, as given in the Rhind Papyrus}*® [cont.]
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A round (i.e., cylindrical) granary of 9 cubits in its height (! di-
ameter?) and 6 in its breadth (! height?); what is the content [or
volume] of grain that goes into it?

The procedure is as follows:

Take away 1/9 from 9, the remainder is 8. Add to 8 its 1/3; it
makes 10 2/3. Multiply 10 2/3 times 10 2/3; it makes 113 2/3 1/9.
Multiply 113 2/3 1/9 times 4, 4 being 2/3 of 6 cubits which is its
breadth (! height?). 455 1/9 is the amount [of the volume] in
khar. Find 1/20 of the amount of it in khar; this is the amount that
goes into it of quadruple hegat, i.e., grain to the amount of 2200
hegat [and] 50, 25%, 1/2, 1/32, 1/64 [hegat, and] 2 1/2,1/4, 1/36
ro

Method of reckoning it:

\1 8

23 5113

\113 223
Total: 10273,

1 1023
\10 106273
\273 7109
Total: 113 2/3 1/9.

1 1132/3 19

2 22712118
\4 455109

1 4551/

1/10 451/21/90
\1/20 22 1/2 1/4 1/45 (1, 1/180).

[Problem 43—A reconstruction based on earlier discussions by
Griffith, Schack-Schackenberg, and Peet]*

A round (i.e., cylindrical) granary with a diameter of 9 cubits and
a height of 6; what is the amount in grain that goes into it?
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The procedure is as follows:

Add to the diameter 1/3 of it; it makes 12. Multiply 12 times 12,
this makes 144. Multiply 144 times 4, 4 being 2/3 of 6 cubits which
is the height. This makes the volume in khar, 576.

Method of reckoning it:
\1 9
23 6
\173 3
Total: 12,
1 12
\2 24
\10 120
Total: 144,
1 144
2 288
\4 576.

[Problem 43—A better Reconstruction following Gillings]”'

A round (i.e., cylindrical) granary with a diameter of 8 cubits and
a height of 6; what is the amount of grain that goes into it?

The procedure is as follows:

Add to the diameter its 1/3; it makes 10 2/3.......[From this point
on the text presented in the Rhind Papyrus can be followed, i.e., the
first of the three versions given here.]

[Problem 44]

Example of reckoning [the volume of] a rectangular granary, its
length being 10, its breadth 10, and its height 10. What is the
amount of grain that goes into it?

Multiply 10 times 10; it makes 100. Multiply 100 times 10, it
makes 1000. Take 1/2 of 1000, namely 500, [and add it to 1000;]
it makes 1500, its contents in khar. Take 1/20 of 1500; it makes
75, its contents in quadruple heqat, namely, 7500 hegat of grain.
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Example of the working out fa continuation from the previous

page].
1 10
10 100
1 100
10 1000
1 1000
12 500
1 1500
1/10 150
120 75
[Proof']

1 75
10 750

\20 1500
1/10 [of 1500) 150
1/10 of 1/10 15

2/3 of 1/10 of 1710  10.

[Problem 45]
A [rectangular] granary into which have gone 7500 quadruple
heqat of grain. What are its dimensions (/iz., by how much of it)?*

Multiply 75 times 20; it makes 1500. Take 1/10 of 1500, namely,
150; 1/10 of its 1/10, 15; 2/3 of 1/10 of its 1/10, 10. Therefore [the
dimensions] of it (i.e., the granary) are 10 by 10 by 10.

[The procedure:]
1 75
10 750
20 1500 [which is its contents in khar]:
1 1500
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1/10 150
1/10 of 1/10 15
23 of 1/10 of 1710 105

[Problem 46]

A [rectangular] granary into which there have gone 2500 quad-
ruple heqat of grain. What are its dimensions (rjt, i.e., “amount™)?

Multiply 25 times 20; it makes 500, the content of this [in khar).
Take 1/10 of it (i.e., of 500), namely, 50; its 1/20, 25; 1/10 of its
1/10, 5; 2/3 of 1/10 of its 1/10, 3 1/3. [Therefore, the dimensions]
of the granary are 10 by 10 by 3 1/3.

The calculation of'it:

1 25
10 250
20 500 [its contents in khar]
1 500
1/10 50
1/10 of 1/10 5

230f 1/100f1/10 3 1/3.
[Therefore, the dimensions of] the granary, in cubits, are 10 by 10
by 3 1/3, as here [noted].

[DIVISION OF 100 HEQAT]

[Problem 47]

If the scribe says to you, “Let me know what is the result when
100 quadruple heqat of grain are divided by 10 [and its multiples] in
a [rectangular or] circular granary.” [Table ends on next page.]

1/10 becomes of grain 10 quadruple hegat
1/20 becomes of grain 5 quadruple heqat
1/30 becomes of grain 3 1/4 1/16 1/64 heqat 12/3 ro
1/40 becomes of grain 2 /2 hegat
1/50 becomes of grain 2 heqat

1/60 becomes of grain 1 1/2 1/8 1/32 heqat 3 1/3ro
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1/70 becomes of grain 1 1/4 1/8 1/32 1/64 heqat 2 1/14 1/21
[the line above is cont. from previous page]

1/42 ro
1/80 becomes of grain 1 //4 heqat
1/90 becomes of grain 1 1/16 1/32 1/64 heqat 1/2 1/18 ro
1/100 becomes of grain 1 heqat.

[PROBLEMS 48-55: PROBLEMS OF AREA]

[Problem 48, see Fig. IV.2, Pl. 70]

[Compare the area of a circle (o, better, an octagon?) and its
circumscribing square.]
[Cir. of diam. 9 (or oct. = to sq. of side 87))  [Sq. of side 9]

1 8 setjat® \1 9 setjat
2 16 setjat 2 18 setjat
4 32 setjat 4 36 setjat
\8 64 setjat \8 72 setjat

Total: 81 setjat

[Problem 49; see Fig. 1V.2, Pl. 71]
Example of reckoning area. If it is said to you: “What is the
area of a rectangle of land of 10 khet by 2 (!, should be 1) khet?”
Proceed as follows:

1 1000 [cubits, i.e., 10 khet)
10 10,000
100 100,000
1/10 10,000

1/10 of 1/10 1000 [cubit-strips, i.e., each strip 1 cubit
wide and 1 khet long.] This is its area.*

[Problem 50]

Example of producing [the area of] a round field of diameter of
9 khet. What is the reckoning (lit., rjt, knowledge) of its area
Gh?
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Take away 1/9 of it (the diameter), namely 1; the remainder is 8.
Multiply 8 times 8; it makes 64. [Therefore,] the amount of it in

area is 64 setjat.
The procedure is as follows:
1 9
1/9 1;
this taken away leaves 8.
1 8
2 16
4 32
\8 64.

The amount of it in area is 64 setjat.”’

[Problem 51; see Fig. IV.2, Pl. 73]

Example of producing (i.e., calculating) [the area of] a trian-
gle (spdy) of land. If it is said to you: “What is the area of a trian-
gle of 10 khet on the mryr (most likely, the “height™ or “kathete”;
less likely, the “side™?)®® of it and 4 khet on the base of i{?”

The Procedure is as follows:

1 400 [cubits, i.e., 4 khet]
1/2 200 [cubits, i.e., 2 khet]

1 1000 [cubits, i.e., 10 khet]
2 2000.
Its area is 20 setjat.*

Take 1/2 of 4, namely, 2, in order to get [one side of] its
[equivalent] rectangle. Multiply 10 [the other side of the rectangle]
times 2; this is its area [i.e., the area of the rectangle and thus of the
triangle].

[Problem 52; see Fig. IV.2, Pl. 74]

Example of a truncated triangle (i.e., a trapezoid). If it is said
to you: “What is the area of a truncated triangle of land of 20 khet
in its height [or, side?], 6 khet in its base, 4 khet in its truncating
line?”
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Add its base to its truncating line; it makes 10. Take 1/2 of 10,
i.e, 5, in order to get [one side of] its [equivalent] rectangle. Mul-
tiply 20 [the other side of its rectangle] times 5; it makes 10 (10
ten-setjat). This is the area.

The procedure is as follows:
1 1000 [cubits, i.e., 10 khet]
172 500
\1 2000
2 4000
\4 8000

Total: 10,000 [cubit-strips, as in the preceding problem].
Its area is 100 setjat (10 ten-setjat™ ).

[Problem 53; see Fig. IV.2LL, Pl. 75]
[Areas of sections of a compound trapezoidal-triangular figure?]”*

\1 412" setjat
\2 9 setjat
172 21/4 setjat
\1/4 11/8 setjat
Total: 51/2 1/8 [\ 14 172 1/8] setjat.

1/10 of it is 1 1/4 1/8 setjat [and]10 cubit-strips. ™
Take away the 1/10 of it. This [i.e., the remainder] is the area of it
[i.e., of the middle trapezoidal figure].

[Turning to the triangular section: i.e., to the triangle with altitude
of 7 and base of 2 1/4; it is calculated as follows:™ ]

1 7 setjat
\2 14 setjat
1/2 312 setjat

\1/4 11/21/4 setjat
Total: 151722 1/4 setjat.
12 71/21/4 1/8 setjat [and this is the area of the tri-

angular element].
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[The calculation of the third section, be it trapezoidal or rectangu-
lar, is missing.]

[Chace’s reconstruction, with some alterations, of the first set of
calculations of Problem 53 in order to approximate the area of the
first trapezoidal sections]”

[Areas of sections of an isosceles triangle. ]

\1 412" setjat
\2 9 setjat
172 21/4 setjat
Total: 15 1/2 14 setjat
1/10 112 setjat [and] 7 1/2 cubit-strips.

Its 1/10 taken away leaves the area: [14 //8 [[and]] 5 cubit-strips.]
[Following along with Chace’s reconstruction, we would note that
the next trapezoidal section, i.e., the middle section in Fig. IV.5c¢, is
not presented in the papyrus, since he had taken the first set of cal-
culations to be concerned with the determination of the area of the
first trapezoidal section. But obviously if the first trapezoidal sec-
tion was known along with the triangular section, then they could
be subtracted from the whole isosceles triangle (which could easily
be found as was the triangular section ). Hence the remainder
would be the area of the middle trapezoidal figure.” The setjat-
fractions in Italics in Problems 53-55 are normal hieratic signs
rather than Horus-eye signs of like value, namely //2 1/4 1/8.]

[Problem 54]

The subtraction (hbt) of the area [7 setjat] from 10 fields [i.e.,
What equal areas should be taken from 10 fields if the sum of these
areas is to be 7 setjat?].”

[Multiply 10 so as to get 7.]

1 10
\172 5
\1/5 2
[Total; 1/2 1/5.]
[The above total equals //2 1/8 setjat plus 7 1/2 cubit-strips.]
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[Proof’]
1 1/2 1/8 setjat 7 1/2 cubit-strips (mh)
\2 1 1/4 1/8 setjat 2 1/2 cubit-strips
4 2 172 1/4 setjat 5 cubit-strips
\8 5172 setjat 10 cubit-strips
Total: 7 setjat.
[Problem 55]

The subtraction of the area 3 setjat from 5™ [i.e., What equal
areas should be taken from 5 fields if the sum of these areas is to be
3 setjat?).*

Multiply § so as to get 3.*'

1 5

12 212

1/10 12
Total: 1/2 1/10.

[Expressed as parts of a setjat and cubit-strips this is //2 setjat 10

cubit strips.]
[Proof’]

\1 122 setjat 10 cubit-strips

2 11/8 setjat 7 1/2 cubit-strips
\4 2 1/4 1/8 setjat 2 1/2 cubit-strips
Total: 3 setjat. Thus the area is 3 setjat.

[PROBLEMS 56-60. PYRAMIDS; THE RELATION OF THE LENGTHS OF
TWO SIDES OF A TRIANGLE]®

[Problem 56]

Example of reckoning a pyramid (mr) whose base-side (wh3-tbt)
is 360 [cubits] and whose altitude (pr-m-wS) is 250 [cubits]. Cause
that I know (i.e., calculate) its seqed (skd, also transcribed as se-
ked), (i.e., slope®™). [See Fig. IV.2mm, Plate 78.]*

Take 1/2 of 360 and the result is 180. Multiply 250 so as to find
180. It makes 1/2 1/5 1/50 of a cubit. A cubit is 7 palms. Multiply
7 as follows:
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1 7

172 312

1/5 113 1/15

1/50 1/10 1/25.
The seqed is 5 1/25 palms.

[Problem 57]

[In] a pyramid whose base-side is 140 [cubits) and whose seqed
is 5 palms 1 finger [per unit of height], what is its altitude? [See
Fig. IV.2nn, Plate 79.]

Divide 1 cubit by the seqed doubled, which is 10 1/2. Multiply 10
1/2 so as to get 7, for note that the latter is 1 cubit; operating on 10
1/2 we find that 2/3 of 10 1/2 is 7. Operating on 140, which is the
base-side, we find that 2/3 of 140 is 93 1/3, and behold this is its
altitude.*

[Problem 58]
In a pyramid whose altitude is 93 1/3, make known the seqed of
it when its base-side is 140 [cubits]. [See Fig. IV.2nn, Plate 80.]
Take 1/2 of 140, which is 70. Multiply 93 1/3 so as to get 70. 1/2
of 93 1/3 is 46 2/3. 1/4 of it is 23 1/3. Take 1/2 1/4 of a cubit.
Operate on 7: 1/2 of it is 3 1/2; 1/4 of it is 1 1/2 1/4; the total is 5
palms 1 finger. This is the seqed.

Working out:
1 93173
\1/2 4623
\1/4 23183
Total 1/2 1/4.
Produce 1/2 1/4 of a cubit, the cubit being 7 palms.
1 7
12 3112

1/4 1[1/2] 1/4
Total: 5 palms 1 finger, which is the seqed.

[Problem 59] [cont.]
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(In] a pyramid whose base-side is 12 [cubits] and whose altitude
is 8 [cubits] what is its seqed? [See Fig. IV.200, Plate 81.]
Multiply 8 so as to get 6, which is 1/2 the base-side.*

1 8
\12 4
\1/4 2
Total 1/2 1/4.
Take 1/2 1/4 of 7, this is a cubit.
1 7
\12 312

\1/4 11/2 1/4.
The result is 5 palms 1 finger, which is its seqed.

[Problem 59B]

If you construct a pyramid with base-side 12 [cubits] and with a
seqed of S palms 1 finger, what is its altitude?®’

Operate on the double of 5 [paims] 1 [finger], which is 10 1/2, so
as to get 1 cubit; a cubit is 7 palms. 2/3 of 10 1/2 is 7. Operating
on 12, [we find that] 2/3 of it is 8, and this is the altitude.

[Problem 60]

(In] a pillar (¢wn) [or perhaps a cone?)™ with a base-side (sntr)
[or perhaps a diameter?] of 15 cubits and a height of 30 [cubits],
what is its seqed? [See Fig. IV.200, Plate 82.%]

Take 1/2 of 15; it is 7 1/2. Operate on 30 so asto get 7 1/2. The
result is 1/4, which is the seqed ™

[PROBLEMS 61-84: MISCELLANEOUS ARITHMETICAL DETER-
MINATIONS]

[Problem 61]
[Table for the multiplication of fractions)®
2/30f2/3is1/3 1/9
173 of 2/3 is 1/6 1/18
2/30f1/3i8 1/6 1/18
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2/3 of 1/6 is 1/12 1/36
23 of 12is 113
173 of 1/2 is 1/6
1/6 of 1/2is 1/12
1/12 of 1/2is 1/24
1/9 of 2/3 is 1/18 1/54; 1/9, 2/3 of it (or 2/3 of 1/9) is 1/18 1/[54]
1/[5), 1/4 of it is 1/20
1/7, 2/3 of it is 1/14 1/42
177, 122 of it is 1/14
1/11, 213 of it is 1/22 1/66, 173 of it is 1/33
/11, 12 of it is 1/22, 1/4 of it is 1/44.

[Problem 61B]

[Rule for] taking 2/3 of an uneven fraction (i.e., the reciprocal of
an odd number). If it is said to you “What is 2/3 of 1/57” you take
the reciprocals of 2 times S and 6 times 5. You do the same thing to
get 2/3 of the reciprocal of any odd number.

[Problem 62]

Example of reckoning a bag containing various precious metals.
If it is said to you: “A bag containing [equal weights] of gold, sil-
ver, and lead is bought for 84 shaty (&ty), what is the amount of
each precious metal.” As for what is given for a deben of gold, it is
12 shaty, for silver it is 6 shaty, and for lead it is 3 shaty.

Add together that which is given for a deben™ of each precious
metal and the result is 21. Multiply 21 so as to get the 84 shaty for
which the bag was bought. The result is 4, which is the number of
debens of each precious metal ®

[Check out the answer as follows:]

Multiply 12 by 4, the result is 48 [shaty] for the gold in it
(i.e., the bag).

[(Multiply] 6 [by] 4; [the result is] 24 [shaty] for the silver
[in the bag].
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[Multiply] 3 [by] 4; [the result is] 12 [shaty] for the lead [in
the bag.]

[Multiply] 21 [by] 4; the total [price is] 84 [shaty, as was
noted above].

[Problem 63]

(Example of dividing] 700 loaves among 4 men, [with] 2/3 to 1
[man], 1/2 to another, [1/3 to the third, and 1/4 to the 4th]). Let me
know the share of it for each [man).

Add 2/3, [1/2,] 1/3, and 1/4; it makes 1 1/2 1/4. Call up 1 out of 1
1/2 1/4 (i.e., get 1 by operating on 1 1/2 1/4); the result is 1/2 1/14.
Take 1/2 1/14 of 700, namely 400. Take 2/3 of 400, namely 266
2/3; [then] 1/2 of 400, namely 200, [then] 1/3 of 400, namely 133
1/3, [and finally] 1/4 of 400, namely 100. [Hence you now have]
the share of each [one of the men]

The procedure is as follows:

The quantity is 700.

1/2 1/14 [of it] 400

2/3of400for1 266 2/3

1/2 of400for1 200

1/3 of 400 for 1 133 (corr. ex 113) 1/3
1/4 of 400 for 1 100

Total: 700.

[Problem 64]

Example of dividing (i.e., distributing) excess (i.e., difference)
[or Example of determining an arithmetical progression]. > If it is
said to you: “There is 10 hegat of barley [to be divided] among 10
men in such a way that the excess of barley of each successive man
over his predecessor is //8 heqat [i.e., there shall be an arithmetical
progression with a common difference of 1/8 heqat],” [What is the
share of each man?] .

The average share is 1 (corr. ex 1/2) heqat. Take 1 from 10, and
the remainder is 9 [as the number of differences, i.e., 1 less than the
number of men). Take 1/2 of the [common] difference, namely
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1/16 [heqat]. Multiply this by 9 and the result is 1/2 1/16 [heqat].
Add [this] to the average share [and this becomes 1 //2 1/16, which
is the largest share], Subtract //8 heqat for each man until you
reach the last one.

The procedure is as follows:

11/21/16,11/41/8 1716, 1 1/4 1/16, 1 1/8 1/16, 1 1/16, 1/2

1/4 1/8 1/16, 172 1/4 1/16, 1/2 1/8 1/16, 1/2 1/16, 1/4 1/8 1/16.

The total is 10 heqat.

[Problem 65]

Example of dividing (/it., making) 100 loaves among 10 men,
[three of them:] a boatman, a foreman, and a door-keeper, each
having a double [share]. [What is the share of each?]

The working-out of it: Add to the people [supplied] three
[because of the double shares of three of them]; the result is 13.
Multiply 13 s0 as to get 100 loaves; the result is 7 2/3 1/39. You
say “This is the ration (/it., eating) for 7 men, and the boatman,
foreman, and door-keeper receive double [such a portion}.””

[The proof of this is in the following addition:] [7 2/3 1/39 taken
seven times for the first 7 men and ]

7 2/3 1/39 + 7 2/3 1/39, making 15 1/3 1/26 1/78 for [each
of] the boatman, the foreman, and the door-keeper. The total is
100,

[Problem 66]

10 hegat of fat is given out for a year. What is the amount for
one day thereof (i.e., of the year)?

Reduce the 10 heqat of fat into ro; the result is 3200. Reduce the
year (rnpt) to days (hrw); the result is 365 Get 3200 by operat-
ing on 365; the result is 8 2/3 1/10 1/2190, making 1/64 [heqat] 3
2/3 1/10 1/2190 ro as a share for a day.

The procedure is as follows” :
1 365
2 730
4 1460 [cont.]
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ns 2920]

\273 243 173
\1/10 36172
\1/2190 1/6

Total: 8 2/3 1/10 1/2190.
You shall proceed in this way in any example like this.*

[Problem 67]
Ex;mple of reckoning (hsb) [with] tribute-[cattle] of a herds-
man,

Now this herdsman came to the cattle-numbering with 70 [tribute]
cattle. The accountant said to this herdsman, “Indeed, this is a
small herd of [tribute-]cattle which you have brought. Where is the
large number of cattle that you owe?” The herdsman answered
him, “What I have brought is 2/3 of 1/3 of the cattle you have
committed to me. Count them for me and you will find that I have
brought the full number of them.”

The procedure is as follows:
1 1
23 23
1/3 13

23 0of13is 1/6 1/18.
Get 1 by operating on 1/6 1/18.

1/6 118
2 1319
\4 2/3 1/6 1118
\172 19
Total: [4 1/2). 1

Multiply 70 by 4 1/2; it makes 315. These are the cattle commit-
ted to him.

[Proof:]
1 315
213 210
173 105
23 of 13 70.
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These are the ones he brought.

[Problem 68]

If a scribe says to you: “4 foremen have received their grain [in
the amount of] 100 great quadruple-heqat, the first gang consisting
of 12 men, the second of 8, the third of 6, and the fourth of 4,”
[how much does each foreman receive?]

[Adding] 12, 8, 6, [and] 4 makes a total of 30 men. Multiply 30
so as to get 100; the result is 3 1/3; hence the amount for each man
is 3 1/4 1/16 1/64'" heqat 1 2/3 ro. Take this amount 12 times for
the first gang, 8 times for the second, 6 times for the third, and 4
times for the fourth. [The basic multiplications:]'!

1 3 1/4 1/16 1/64 hegat 1 2/3 ro
2 6 1/2 1/8 1/32 hegat 3 173 ro
\4 13 1/4 1/16 1/64 hegat 1 2/3 1o

\8 26 1/2 1/8 1/32 heqat 3 173 ro

[This table is the calculation for the first gang of 12. The same four
multiplications are repeated for the next three gangs, but with the
respective checking of the fourth multiplication for the 2nd gang,
the second and the third'” multiplications for the 3rd gang, and the
third multiplication for the 4th gang.]

[Hence the final] list of [the amounts received by] these [four]
foremen [are tabulated, with] great quadruple-heqat of grain
[reduced to regular hegat:]

The first [foreman] with 12 Tmen receives]
1/4 of 100 heqat + 15, [or] 40 heqat
The second [foreman] with 8 [men receives]
1/4 of 100 heqat + 1 1/2 1/8 1/32 heqat 3 1/3 ro (or)
26 2/3 heqat
The third [foreman] with 6 [men receives]
20 heqat [repeated as) 20 heqat
The fourth [foreman] with 4 [men receives]
13 1/4 1716 1/64 heqat 1 2/3 ro [or] 13 1/3 heqat
The total [which the 4 foremen receive is ]
100 heqat [or] 100 heqat.
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[Problem 69]

3 1/2 hegat of meal is made into 80 loaves of bread. Make known
to me the amount of meal in each loaf and their pefsu (pfiw)'®
[i.e., cooking potency'®].

Multiply 3 1/2 so as to get 80.

1 312
10 35
\20 70
\2 7
\2/3 2183
\1/21 1/6
\1/7 112.
The pefsu is 22 2/3 1/7 1/21.

[Proof]
\1 2223 1/7121
\2 451/3 1/4 114 1/28 1/42
\12 11153114 1/42

[Total :  80].
[3 1/2 heqat makes 1120 ro, for]
\1 320
\2 640
\172 160
Total: 1120 ro.
[Hence] multiply 80 so as to get 1120.
The procedure is as follows:
1 80
\10 800
2 160
\ 4 320

Total: [14] 1120.
So the amount of meal in one loaf [is 14 ro or] //32 heqat 4 ro.
[Proof, with the Horus-eye fractions given here in Italics:]

174



DOCUMENT IV.1: RMP

1 1/32 [heqat] 4 ro

2 1/16 1/64 [heqat] 3 ro

4 1/8 1/32 1/64 [heqat] 1 ro

8 1/4 1/16 1/32 [heqat] 2 ro
\16 172 1/8 1/16 [heqat] 4 ro

32 1 1/4 1/8 1/64 [heqat] 3 ro
\64 2 1/2 1/4 1/32 1/64 [heqat] 1 ro
The result is 3 1/2 heqat of meal [for the 80 loaves, as was
specified].

[Problem 70]

7 172 1/4 1/8'” hegat of meal is made into 100 loaves [of bread].

What is the amount of meal in each loaf and what is their pefsu?
Multiply 7 1/2 1/4 1/8 so as to get 100,

1 71/21/41/8
2 151/2 1/4
\4 31112
\8 63
\213 51/4
The totalis 99 1/2 1/4; the remainder is 1/4
1/63 1/8.

Double the fraction to get 1/4.
1/42 1/126 1/4

The pefsu is 12 2/3 1/42 1/126.

[Proof’]
\1 12 2/3 1/42 1126
\2 25 1/3 1/21 1/63
\4 502/3 114 1/21 1/126
\172 61/31/84 11252
\1/4 31/6 1/168 1/504
\1/8 11/2 1/12 1/336 1/1008
[Total:  100.]

[Now 7 1/2 1/4 1/8 heqat make a total of 2520 ro, for
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1 320
2 640
4 1280
12 160
1/4 80
1/8 40]
Total: 2520.
Multiply 100 so as to get 2520:
1 100
10 1000
\20 2000
\S 500
\1/5 20

[Total: 25 1/5, i.e., ] the content of each loaf in ro, which is 1//6
1/64 [heqat] 1/5 ro.

[Proof:]
1 1/16 1/64 [heqat] 1/5 ro
10 172 1/4 1/32 [heqat] 2 ro
100 7 172 1/4 1/8 [heqat).
[Problem 71}

From 1 des-jug of beer 1/4 has been poured off and then the jug
has been refilled with water. What is the pefsu of diluted beer?

Calculate the amount of besha (i.e., a kind of grain or fruit) in 1
des of beer; the result is //2 [heqat])'® of besha. Take away 1/4 of
it, namely, //8 [heqat]. The remainder is //4 1/8 [heqat]. Multiply
1/4 1/8 [heqat] so as to get 1 [heqat]. The result is 2 2/3, which is
the pefsu [of the diluted beer].

[Problem 72]

Example of exchanging loaves for other loaves. You are told that

there are 100 loaves of [pefsu] 10 to be exchanged for some num-

ber of loaves with [pefsu] 45. [How many of these will there be?)
Calculate the excess of 45 over 10; it is 35. Multiply 10 so as to

get 35; itis 3 1/2. Multiply 100 by 3 1/2; it is 350. Add 100 to it;
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itis 450. Say then that 100 loaves of [pefsu] 10 are exchanged for
450 loaves of [pefsu] 45, making in wedyet-flour 10 heqat.

[Problem 73]

If it is said to you, “100 loaves of [pefsu] 10 are to be exchanged
for loaves of [pefsu] 15. How many of the latter will there be?”

Calculate the amount of wedyet-flour in these 100 loaves; it is
[10] heqat. Multiply 10 by 15. This is 150. Reply [then] that this
is [the number of loaves for] the exchange.

The procedure is as follows: 100 loaves of [pefsu] 10 would be
exchanged with 150 loaves of [pefsu] 15. [It takes] 10 heqat.

[Problem 74]

Another [problem]. 1000 [loaves] of [pefsu] S are to be ex-
changed, [1/2] with [loaves of pefsu] 10 and [1/2] with [loaves of
pefsu] 20. What is the exchange of them [i.e., how many loaves of
pefsu 10 and how many of pefsu 20 are to be exchanged for each
500 loaves of pefsu 5]?

Evaluate the 1000 loaves with [pefsu] 5. They will take 200 hegat
of Upper Egyptian barley, Then say that this is the amount of
wedyet-flour in these loaves. Take 1/2 of 200 heqat, namely, 100
heqat. Multiply 100 by 10; it makes 1000, the number [of loaves] of
pefsu 10, Multiply 100 by 20; the result is 2000, the number [of
loaves)] of pefsu 20.

The procedure is as follows: 1000 loaves of [pefsu] 5, made from
200 heqat of wedyet-flour, can be exchanged for 1000 loaves with
[pefsu] 10, made from 100 heqat of wedyet-flour, plus 2000 loaves
with [pefsu] 20, made from 100 heqat of wedyet-flour.

[Problem 75]

Another [problem]. 155 loaves of [pefsu] 20 are to be ex-
changed [for a number of loaves] of pefsu 30. [What is that num-
ber?]

The amount of wedyet-flour in the 155 loaves of [pefsu] 20 is [to
be] 7 1/2 1/4 [heqat]. Multiply [this] by 30; the result is 232 1/2.
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The procedure is as follows. 155 loaves of [pefsu] 20, made from
7 172 1/4 fheqat] of wedyet-flour [can be] exchanged for 232 1/2
[loaves] of [pefsu] 30. [It takes] 7 /2 1/4 [heqat].

[Problem 76]
Another [problem]. 1000 loaves of [pefsu] 10 are to be ex-

changed for a number of loaves of [pefsu] 20 [and the same num-
ber] of gyefsu] 30. He (i.e., the learner) shall hear [what that num-
ber is)."
[One loaf of each kind will take] 1/20 and 1/30 [of a heqat]. [As
parts of 30] 1/20 is 1 1/2 and 1/30 is 1. [Added,] the total is 2 1/2.
Multiply 2 1/2 so as to get 30:

1 212
V10 25
\2 5
Total: 12.

[Therefore 2 1/2 is 1/12 of 30, so that 1/20 1/30 equals 1/12.
Two loaves, one of each kind, will take 1/12 of a heqat and 1 heqat
will make 12 loaves of each kind.)

The quantity of wedyet-flour in the 1000 loaves is 100 heqat.
Multiply 100 by 12; the result is 1200, which is [the number of
loaves of each kind, i.e., for loaves of pefsu] 10 [and those of
pefsu] 20. [In summary,]

1000 loaves of [pefsu] 10, making 100 heqat of wedyet-flour
can be exchanged for

1200 loaves of [pefsu] 20, making 1/2 of 100 [heqat] and 10
[heqat, totaling 60 heqat of wedyet-flour], and

1200 loaves of [pefsu] 30, making 1/4 of 100 [heqat] and 15
[heqat, totaling 40 heqat of wedyet-flour].

[Problem 77]

Example of exchanging beer for bread. If it is said to you: “10
des of beer [of pefsu 2] are to be exchanged for [loaves of bread of
pefsu] 5” [reason as follows to find the number of loaves).
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Reckon the amount of wedyet-flour in 10 des of beer; it is 5
[heqat]. Multiply S by 5; it makes 25. Say then: “This [i.e., 25] is
[the number of loaves for] the exchange.”

Proceed as follows:

10 des of beer taking 5 heqat of wedyet-flour can be exchanged
for

25 loaves [of bread of pefsu] 5; [for these also take] 5 [heqat of
wedyet-flour).

[Problem 78]

Example of exchanging bread for beer. If it is said to you: “100
loaves of bread of [pefsu] 10 are to be exchanged for a quantity of
beer of [pefsu]2” [reason as follows to find the quantity of beer].'”®

Reckon the amount of wedyet-flour in 100 loaves of [pefsu] 10; it
is 10 [heqat]. Multiply 10 by 2; it makes 20. Say then that this
[i.e., 20 des] is [the amount of beer it takes for] the exchange.

[Problem 79]

[Sum a geometrical progression of five terms of which the first
term is 7 and the multiplier of each term is 7.]

A house-inventory [shows how to find the multiplication by 7 to
find each term as a product in a series].

[Multiply 2801'® by 7:]

1 2801

2 5602

4 11204
Total: 19607,

[The same procedure is followed to multiply each term in the fol-
lowing series of five numbers by 7, which then may be summed.]
houses 7

cats 49
mice 343
malt 2401 (corr. ex 2301)
heqat 16807
Total: 19607,
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[Problem 80]

[Horus-eye fractions of a heqat (given on the left in the table be-
low) in terms of the henu, or hinu, as it is often called (given on the
right in the table).""]

As for vessels (dbh) used in measuring [grain] by the functionar-
ies of the granary, done into henu (hnw):

1 heqat makes 10 henu

12 [ditto]  5henu

l/4 [ditto] 2 1/2 [henu)

1/8 [ditto] 1 1/4 [henu)
1/16 [ditto]) 1/2 1/8 [henu)
1/32 [ditto] 1/4 1/16 [henu])
1/64 [ditto] 1/8 1/32

[Problem 81]
Another reckoning of the henu [from Horus-eye fractions of a
hﬂlat].l"
Now //2 heqat makes 5 henu
g “© o212 0
g« “ 114 0
vie “o12i1ms
1732 « “ 14116
1764 “ “ 18132«

[Table a)'"?
Now
1/2 1/4 1/8 heqat makes 8 1/2 1/4 henu
12 1/4 “ “ 712 “
1218132 318r0 “ 623 “ itis2/3 of a hegat
12 1/8 “ “ 61/ ot 121/8
/4 178 “ 312174 ¢ ““ 1/41/8 “
/4 1716 1764 1213« “ 3113 A V£ “
/4 “ “o21R ““v1/4 “
1/8 1/16 “ 4 ¢« 2 “ uels “
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1/8 1732 “ 313 ¢ 123 “oo*“1/6 «

[Table b]'"
Now
86 « 4 ¢« “ 2 R V-] “
6132« 2 0« 1 “ ““110 “
17321764 « 1« “ 12 “ 4120 “
1/64 “ 3 %« 1/4 © o 1/40 “
ie “ o113t 4 23 “  ““1/15 “
[Table c]
1732 “ 23« « 13 “ o **1/30 “
1/64 “ 173« “ 1/6 “ o “*1/60 “
12 “ 5 R V7] “
1/4 “ 2112 R V7 ) “
12 I/4 “ 712 Ut 121/4 4
1214 1/8 « “ 8121/4 * ““1/21/41/8%
[Table d]
1218 “ 61/4 “ v 121/8 “
la1/8 ¢ “ 312114 ¢ ““1/41/8 «
121/81/32“ 313 “ 623 R T£ | “
/4 /161764 “ 123« “ 3183 “ o 13 “
1/8 “ “ 11/4 o418 “
vie “ “ o218 ¢ ““1/16 “
[Table e]
1732 “ “ 14116 *“  ““1/32 “
1/64 “ “ 1/8132 ¢ ““1/64 “
[Problem 82]'"*

Estimate of the food for a fowl-yard, i.e., the daily portion [of
wedyet-flour] made into loaves.
10 birds, i.e., fatted geese, eat [daily] 2 //2 [heqat] of wedyet-
flour
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Taking for 10 days 1/4 of 100 [heqat]

Taking for 40 days 100 [heqgat].
The amount of malt that has to be ground to produce (?) it is

1 1/2 times 100 heqat 16 1/2 1/8 1/32 [heqat] 3 1/3 ro.
The amount of wheat is

1/3 1/4 of 100 heqat 8 1/4 1/16 1/64 [heqat] 1 2/3 ro.
That which has to be taken away is 1/10 of this, namely,

6 1/2 1/8 1/32 [heqat] 3 173 ro.
The remainder, which is the grain in heqat to be given (i.e., re-

quired), is

1/2 1/4 of 100 [heqat] 18 1/4 1/16 1/64 [heqat] 1 2/3 ro.
Expressed in double hegat this is

1/4 of 100 heqat 21 1/2 1/8 1/32 [heqat] 3 1/3 ro.

[Problem 82B]
Amount of feed [necessary for other kinds of] fatted birds.
If it takes to fatten 10 birds (i.e., geese) for 1 day 1 //4 [heqat],
It will take for 10 days 12 //2 [heqat]
And for 40 days 1/2 [of 100 heqat].
The amount of grain to be ground in double heqat is
23 174 1716 1/64 [heqat] 1 2/3 ro.

[Problem 83]

[Estimate the feed necessary for various kinds of birds.]

As for the feed of 4 geese that are penned up, if it is 1 henu of
Lower Egyptian grain [for one day], the daily portion of feed for
one of the fatted geese, [i.c.,] the portion which it eats, is /1/64
[heqat] 3 ro [of Lower Egyptian grain).

As for the feed of a goose that goes into the pond, it is ///6
1/32 heqat 2 ro; that is, 1 henu for 1 goose.

For 10 geese it takes 1 heqat of Lower Egyptian grain.

For 10 days 10 heqat.

For a month 1/4 of 100 heqat § he1at (i.e., 30 heqat).

The daily portion of feed to fatten'"

A goose is 1/8 1/32 heqat 3 1/3 ro for 1 bird
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A tjerp-goose is 1/8 1/32 heqat 3 1/3 ro for 1 bird
A crane (djat-bird) is //8 1/32 heqat 3 1/3 ro for 1 bird
A set-duck® is 1/32 1/64 heqat 1 ro for 1 bird
A ser-goose is 1/64 heqat 3 ro for 1 bird

A doveis 3 ro for 1 bird

A quail is 3 ro for 1 bird.

[Problem 84]
Estimate the feed oflf1sull (or stable) of oxen.

4 fine Upper Egyptian bulls eat 24 [heqat] 2 [hegat]

2 fine Upper Egyptian bulls eat 22 [heqat] 6 [heqat]

3 common ...cattle eat 20 [heqat]) 2 [heqat]

1...0x [eats] 20 [heqat]

Total of this feed 86 [heqat] 10 [heqat]

It makes in malt 9 [heqat] 7 1/2 [heqat]

It makes for 10 days 1/2 1/4 of 100 [heqat] 1/2 1/4 of 100
15 [heqat] [heqat]

It makes for a month 200 [heqat] 1/2 1/4 of 100

[heqat] 15 [heqat]
It makes in double heqat  1/2 of 100 [heqat] 1/4 of 100 [heqat]
11 1/2 1/8 [heqat] 3 ro 5 [hegat]
[Here ends the mathematical tract in the Rhind Papyrus. The re-
maining entries, numbered 85-87, are treated and discussed by
Chace at the end of his text and translation.]'™®

Notes to Document IV.1

! Throughout this document the use of bold-faced type indicates rubricated
writing in the Rhind Papyrus, as | have noted in some detail in the Introduction
to this document, This title in the first line of the treatise (the section given in
red in the extreme right-vertical line in Figure 1V.2a, Plate 1) has been the ob-
ject of much attention from the beginning of the modem study of the treatise.
The first attempt at translating it was that of S, Birch, “Geometric Papyrus,”
ZAS, Vol. 6 (1868), p. 109; “Hence the title of the work appears to be the
‘principle of arriving at the knowledge of things (or quantities) and of solving
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all secrets which are in the nature of things.” " (The ltalics are mine.) Also of
great interest is the discussion by F.LL. Griffith, “The Rhind Mathematical Pa-
pyrus,” PSBA, Vol. 14 (1891), p. 27, where he quotes Vol. 2, Plate 1, lines 1-2
and Vol. 1, p. 27 of Eisenlohr’s semiual work (see my Introduction, n. 9): “ Jp
(? 1p) hsb n har (7 h%) m pt: rp nut nbt, snkt (2) (nlx, .....nbt\, $tar (2%5%) nbi.
‘Rule of calculating the results (?) of things, the knowledge of everything that
is, of [all] obscurities, [of all mysteries] of all dlﬂ'lculh%’ The translation of

the first phrase and the restoration are both conjectural. | seems to mean, like
our ‘head’ (of cattle), ‘an individual,” ‘a unit’: thence: ‘an instance,’ ‘model
go«ed asQan e*; l.hcncz ‘anIe‘ or ‘collection of rules,’” as in

gﬂj . . == in the Bulaq papyrus of accounts is
tls heading for the balance sheets, and in the Math. Handb., Pl. XX, No. 67,

._:.ﬁ, ‘I have calculated’ (what was owing). | = should therefore mean
‘rule of calculation’; | 4 ==, *rule of the foo," i.e., of times of entrance,
etc., and behaviour, ? , ‘mle of excellence’ ? or ‘excellent example’;
?&“*, ‘correct example,” or ‘rule of comrectness.” | == and
QJ are o&en employed in a metaphorical sense, but here the literal

meaning of | == seems appropriate.” Concerning “tep” the cautious Michel
Guillemot says (“A propos de la ‘géométric égyptienne des figures’,” in Sci-
ences et techniques en perspective, Vol. 21 [1992], pp. 126Ter-127): “Pour
August Eisenlohr, le premier traducteur du papyrus Rhind, il s’agit
d’instructions, de rudiments quand ce ne sont pas simplement des problémes,
Eric Peet distingue seulement ‘méthode’ et ‘exemple’. Plus scrupuleux Arnokd
Chace traduit toujours par exemple. Enfin Struve oscille entre exemple, forme
ou méthode. Per notre part nous sommes tentés d'y voir des ‘exemples de’.
Mais nous nc devons pas considérer les divers ‘problémes’ comme des exem-
ples servant 2 illustrer une théoric diment explicitée. Ici, cette derniére est
absente, du moins sur le document. Autrement dit ‘exemple’ doit alors étre
entendu au sens ‘d’action, de maniére d’étre, considérées comme pouvant étre
imitées’: le mot ‘téte’ qui sert d’écriture exprime peut &re cette possibilité
d’imitation. Dés lors les ‘exemples’ ne sont nullement des régles 4 suivre im-
ivement mais des méthodes laissées A un certain libre arbitre,”
This is the Hyksos King Apophis, who reigned ¢. 1585-42 B.C.

184



DOCUMENT IV.1: RMP

3 This is King Amenembet 11T of Dynasty XI1, who reigned about c. 1844-1797
B.C. Hence the old copy puts the original text squarely in the very fertile pe-
riod of the development of mathematical tables and problem collections.

“ The indications given in brackets that act as titles for the successive divisions
of 2 by the odd numbers from 3 to 101 were not in the original text, but the
additions make it easier for the reader to find any desired division quickly.
However we do find frequently the pertinent denominator appearing by itself at
the beginning of the section. For example, note the “5™ appearing outside of
the bracketed phrase in the first line of the next section covering the division of
2 by 5. Since it is in the text I leave it outside of the square brackets of the sub-
title. In his exceedingly nice paper, “The (2:n) Table in the Rhind Papyrus,”
B.L. van der Waerden puts all of this succinctly by saying: “The Rhind Papyrus
contains a table, consisting of 50 short sections headed by questioning sen-
tences like ‘What part is 2 of 37 What part is 2 of 57 etc. until What part is 2
of 1017 ” Actually no such questions specifically appear in the text, but they
are implied by the phrase “Call 2 etc.” discussed in the next note, and the unit-
fraction solutions to the divisions stated prior to the Procedure for working
them out.

* A similar phrase: “Call 2 out of n (where n is onc of the successive odd num-
bers from 3 to 101)” is given at the top of each page of the papyrus with the
understanding that it applies to each and every onc of the divisions on that
page. It is evident that by that phrase the author means to find two to four
multipliers of of n that yield products which together sum to 2. The sum of
those multipliers in each case constitutes a string of no less than two and no
more than four unit fractions solving the desired division under consideration.
®This expression means “guidance” to finding the solution already given in the
preceding line. As I have explained in the general account of Chapter IV and in
the Introduction to this document, the multipliers sought after as unit fractions
that will solve the division are singled out by backward slants here in the
translation. In the hieratic text, which proceeds from right to left, the marks of
sclection are forward slants. In fact, the author is by no means consistent in
using these slants throughout the papyrus. But it is a simple matter to restore
them. Incidentally, another term for “Procedure”™ (occasionally but not usually
rubricated) is used in the calculating tables found in the problems that follow
the Table of Two, namely, irt, which literally means “the doing™ or “the mak-
ing” (e.g., se¢ Problems 1-6).

" Note that the term “Procedure” found in the previons division is understood
as being pertinent here and in all the succeeding divisions in the Table of Two,
whether given or not. Note also that in the fourth line of the working out the
author realizes that, for the products of the second column to sum at 2, the next
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product must be 1/4. For that to be the case the calculator must determine the
multiplier of 1/7 which would produce 1/4. He does this by quadrupling the
multiplicand (7) and then taking the reciprocal of that product, namely 1/28.
This then will be the multiplier that will be the second unit fraction, which,
when added to 1/4, produces the solution of the division sought. This use of
reciprocals is repeated again and again in the procedures outlined in the Table
of Two.

® The Egyptian word which is customarily used in this position is dmd, which
means “total.” [ have added it in brackets to indicate that, though it is not
given in the text here, the following line is the sum of the checked lines.

®The Egyptian word is ¢%, which means “remainder” or “balance™ or
“deficiency.”

'° The scribe is careless here. He has left out the “29” and put in its place the
“1/24" that should begin the next line. The “1 1/6 1/24” that should follow in
the second column has been moved to the third. The scribe placed a check mark
before the “1” in the first line of the Procedure, but 1 have correctly deleted it
since the first line is not a part of the solution. Similar carelessness on the part
of the scribe occurs ofien in the text of the Table of Two and has everywhere
been noted in the Chace edition; hence 1 have not given any further notice of it
here but have silently accepted the corrections noted by Chace.

" These numbers 6, 7, and 5 are placed under numbers 35, 1/30, and 1/42 (see
Fig. IV.2¢, Plate 10). Note that I have clevated the first number (35) to be a
Panofthetitlcoftheopemions,aslhavedoneinanumberofmes.

2 For the necessary insertions of the New York fragments in this and the suc-
ceeding divisions of the Table of Two (i.e., 2/89, 291, 2/93, 2/95, 2197, 2/99,
and 2/101), see Chace’s footnotes to those divisions in Volume 2 of his edition,
on the versos of Plates 29-32.

'3 This table concerns the divisions of the numbers 1.9 by the number 10 and
Problems 1-6 are specific and practical examples of the divisions of 1, 2, 6, 7,
8, and 9 loaves, successively, among 10 men, 1n addition to showing how the
table can be derived by simple division, R.J. Gillings, Mathematics in the Time
of the Pharaohs, pp. 121-23, presents an alternative method or rather methods
which start with the immediately obvious divisions of 1, 2, and 5, and then pro-
ceed to the remaining divisions by the use of addition, doubling, and prior de-
terminations given in the Table of Two.

1 For the translation of p as “Example” see note 1 to this document,

5See the notes relative to Problems 4-9 in Chace's translation, in which he
speculates on how the particular doublings given in the procedure or proof
tables were obtained.
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16 According to Gillings, Mathematics in the Time of the Pharaohs, pp. 109-10:
“These 15 problems (including Problem 7B) form in reality a table of 3- and 6-
term unit-fraction equalities similar to the Recto Table [of Two in the Rhind
Papyrus] and the EMLR |[i.c., the Egyptian Mathematical Leather Roll]....."
Chace regards them as examples of simple multiplications of fractional expres-
sions, and Neugebauer as completion problems for 2 + 7 and 2 + 9 of the Recto
[Table of Two..... It is my view that this group of problems was included in
the RMP to establish a set of 3-term and 6-term equalities for inclusion in
Egyptian standard tables, or was taken from a set of such tables.” He goes on
(pages 110-19) to elucidate this view further. Whatever the ultimate purpose of
these problems, | see no reason not to follow Chace’s view of them as multipli-
cations of fractional expressions, and 1 give the expressed multiplications in the
lead line of each problem.

' Chace in the page facing the text in Vol. 2 has an important note here on
what he calls a “curious mistake running through Problems 10, 11, 12, and 14.
1/9 was written as a half of 1/7, and then repeated halving gave 1/18, 1/36, and
1/72. Afterwards someone discovered the mistake and attempted to correct it,
but succeeded ouly in part.... In cach of the four the total is correct for the
numbers obtained by halving from 1/7. It may be that some of these mistakes
were made in copying.” 1 have followed Chace’s translation in Vol 1 by giv-
ing the correct numbers.

1 Concerning the mistakes present in the papyrus for this Problem and the pre~
ceding one, see the footnotes given by Chace in his text, the versos of Plates 39
and 41.

' As Chace points out (on the page facing his plate 44, n. 3), “it is extremely
doubtful whether this phrase belongs in this problem.”

2 Chace in his translation of Problem 23 notes that the scribe does not show
how to get the fractions 1/9 1/40. Hence, following the procedures of Problems
21 and 22, Chace proffers a possible solution.

3 These so-called Aha problems are all expressible in modern algebraic form as
linear equations (as 1 have noted below), though the arithmetic techniques of
duplication, halving, taking 2/3 and 1/3 of numbers, and taking ten times or
1710 of numbers, used by the Egyptian and exhibited throughout the Rhind Pa-
pyrus are of course employed rather than the conventional modern techniqnes
of solving equations. Notice also that 8 procedure something like that found in
later algebras of “false position™ is used by the Egyptians, though the propor-
tion that underlies the relations between the false assumption and the true un-
known quantity is never specified but rather is ouly implied by the successive
multiplications that are carried out by the scribe. The first number assumed to
begin the multiplications was in each case obtained by multiplying the denomi-
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nators of the fractions of the quantity specified in the enunciations of the prob-
lems. 1 have highlighted this preliminary assumption in the translations of
these problems by bracketed phrases which begin thus: “[{Assume such-and-
such-a-number).” The phrase appears in the Chace translation, but he does not
bracket it, which might lead the reader to assume incorrectly that a formal as-
sumption has been specified. The further assumption that is at the heart of the
solution of each of the problems is that in the first calculations the value of the
unknown quantity, i.e., the Aha, is assumed to be 7 in Problem 24, 2 in Prob-
lem 25, 4 in Problem 26, and 5 in Problem 27. The sum of the terms under this
assumption must be operated on to produce the actual sum given in the enun-
ciation. The multiples added together to convert the first sum into the enunci-
ated sum yield a number, which, when multiplied by the first assumed number
obtained by multiplying the denominators, gives the true value of the unknown
quantity. The solution is then checked or proved (so to speak) by adding the
quantity songht (and now found) and its fraction or fractions to see if they yield
the total specified in the enunciation of the problem. Hence this procedure docs
resemble the algebraic technique of false position found later in the develop-
ment of algebra, as I have suggested above.

1
# This is equivalent to the equation x+;x= 19, without asserting that the

Egyptian mathematician solved it with algebraic techniques.

 As Chace notes in his translation, the author finds it easier to multiply 2 1/4
1/8 by 7 rather than 7 by 2 1/4 1/8. “A similar change is made in each of the
next three problems.”

This problem can be expressed algebraically by using the modern equation

1
x+5x= 16. See the proviso of note 22.

1
2 This is equivalent to the equation x+-4-x=15. See the proviso of note 22.

1
2 This is equivalent to the equation x+;x= 21. See the proviso of note 22.

1 This problem’s solution is given rhetorically, without the tabular multiplica-
tions found in the preceding problems. Presumably the procedures are the
same. Chace adds a possible solution using the Egyptian technique: “It may be
supposed that our author first solved the problem as follows:

Assume 9.
\1 9
\2/3 6
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Total 15
1 15
113 5

Remainder 10.

As many times as 10 must be multiplied to give 10, that is, once, so
many times 9 must be multiplied to give the required number, and therefore the
required number (i.c., unknown number] is 9. But now he notices that 9 is ob-
tained by taking away its 1/10 from 10, 50 he puts in the solution given in the
papyrus.”

. 2 1 2
The problem is equivalent to (x+-3-x)—§(x+-3-x)= 10. See the

proviso of note 22. The fact that the phrase “Proceed as follows” is at the end of
the problem suggests that the scribe accidentally omitted the calculations in-
volved in this problem when his eye wandered to the calculations used in solv-
ing the next problem. This is the suggestion of Peet in his version of the Rhind
Papyrus (p. 63). It is given support by the fact that in Problem 29, the enuncia-
tion of the problem in the papyrus is missing.

* As [ have said, the usual calculations are missing.

® As | indicated above, the statement of Problem 29 was omitted by the scribe.
I have used bold-faced type in the same way that the scribe used rubrication in
the preceding problems. This problem is equivalent to this equation:

1 2 1 2
3 (x+§x)+ 3(x«!- 3x)]- 10.

Again see the proviso of note 22, It is evident that the calculations given here
are only those of the end of the problem where the solution is shown to check
with the presumably specified conditions of the problem. Chace in his transla-
tion has proposed the preliminary calculations leading to those given in the
papyrus. “As in the preceding problem it may be supposed that our author first

solved the problem as follows:
Assume 27.

\1 27

\23 18

Total 45

173 15

Total 60

23 40

V74 20.
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“As many times as 20 must be multiplied to give 10, so many times 27
must be multiplied to give the required number [namely, 13 1/2]. But at this
point he seems to have changed the order of these numbers in his mind and to
have said, As many times as 20 must be multiplied to give 27 so many times 10
must be multiplied to give the required number.

\1 20

12 10

\1/4 5

\1/10 2
Total 1 1/4 1/10

Therefore we must multiply 10 by 1 1/4 1/10 (see Peet, page 64 [of his transla-
tion]).”

% These problems can be expressed by linear equations. The reader will recall
that in the preceding group of problems two basic assumptions were made, the
first being the assumption of a common denominator for the various fractional
coefficients of the unknown quantity so that all the coefficients involving the
unknown may be operated on by the usual methods of multiplication and addi-
tion that constitute the essential arithmetical procedures of the Egyptians. The
second assumption involved an initial “false positing” that the unknown quan-
tity sought is a trial number and then correcting the numerical result of that
assumption by finding the multiplier necessary to produce the numerical result
given in the initial statement of the problem. While the first assumption is also
everywhere present in the solutions of Problems 30-34, the second assumption
is replaced by a different form of solution. Since these problems represent di-
visions, in the Egyptian fashion the author secks the solution of each of these
problems in finding a multiplier that operates on the given multiplicand which
consists of the sum of the coefficients specified in the enunciation of the prob-
lem in order to produce the whole number specified in the problem. Such a
multiplier will then be the desired unknown.,

I hasten to note that my account of these methods of solution from an
algebraic point of view is somewhat anachronistic, at least so far as the terms 1
have used (like sum of the “coeflicients” of the unknown), terms which owe
their origin to algebra. But I stress here that the reader must not deduce from
this usage that modern algebraic techniques are necessarily implied. Each
problem must be examined on its own to sec what techniques may be involved
in the solution in each of these implied equations. The distinction between
terminology and methods certainly lies behind my discussion of Egyptian Aha
problems in Chapter Four. In fact, it appears that, since the problems 1 now
discuss involve collections of a given whole number and fractional parts of an
unknown quantity, what is being done in effect by the Egyptians is to factor out,
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or better add, the collection of coefficients of the unknown, then to consider it
as a multiplicand, leaving the value of the unknown as the multiplier. In short,
the reader is being asked to find the multiplier (a mixed expression of a whole
number and fractions) that will operate on the given multiplicand (which is
itself expressed as a mixed number) to produce a given number. Thus all of
these problems are in a sense merely arithmetical problems which must be
solved by the usual Egyptian procedures of doubling, multiplying by 10, halv-
ing, taking 2/3 of, or taking one-tenth of. What is impressive is the manipulat-
ive skill of the Egyptians in computing with fractions that is evinced in the so-
lutions of the problems.

2 1
"meqtﬁvalentequaﬁoninalgebmicfonnisgx+ﬁx=10. See the
?rovisoofuote 22,

?In his translation, Chace discusses how the author could have reckoned the
remaining 1/30 as 1/23. I need not repeat his statements here, but the reader
may find them illuminating.

B o s . ) 2 1 1
This is equivalent to the following equation: X +—x+=x+—x =33, See

32 7
the proviso of note 22.
¥ Since this problem, like Problem 30, is a completion problem, it is helpful to
add this bracketed phrase to start the solution, a phrase like the one initiating
the solution of Problem 30.
% In the papyrus this series of numbers appears next to the end of the calcula-
tions but in fact belongs here.

3 This is equivalent to the algebraic equation: x+'§-x+'i-x=2. See the
rrovisoofuotezz.

? See note 34.

*1In the papyrus this table and the next one are preceded by the bulk of the
proof, which was to follow later. The scribe seems to have realized that he
wanted these auxiliary calculations before the proof. Hence he added the word
“stand” (5%, which he then followed with the two tables and the extensive
proof [ give below.

2 1 1
¥ The equivalent algebraic equation is: x+§x+-2-x+:,-x =37, Seethe
proviso of note 22.
“©See note 34.
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“ Chace in his translation comments: “The calculation by which the 97 is ob-
tained is given above in the solution of Problem 31.”

“2Concerning this and the preceding fraction Chace in his translation says:
“We may notice that in the course of his proof our author has 2/3 of 1/679
equal to 1/1358 1/4074, a remarkable application of the rule given in Problem
61[B).”

1 1
“This is equivalent to the equation: x+5x+-4-x= 10. See the proviso of

note 22,

“Problems 35-38 were solved essentially by the method that resembles alge-
braic false position, which we have noted appears to have been used in Prob-
lems 24-29. It was also used in Problems 40 and 70. 1 alert the reader to the
statement made by Chace in the first volume of his edition of the Rhind Papy-
rus, p. 11, where he further notes that Problems 35, 37, and 38 “show more
clearly [than cither of the preceding groups of problems couched in terms of
‘quantity’ only] that this process enables us to keep in mind the nature of the
quantities involved.” He then goes to explicate in some detail this statement by
analyzing what he believed to be the reasoning of Problem 35.

3 Chace in his free translation says about the enunciations of problems 35-38:
“In these problems in the papyrus the questions are put in a curious way: °I
have gone a certain number of times into the hekat-measure, certain parts have
been added to me, and I return filled. What is it that says this?" It is stated as if
the vessel represented as speaking had gone into the hekat-measure and re-
turned filled, but clearly it is the hekat-measure that is filled.”

“See Griffith’s “Notes on Egyptian Weights and Measures,” PSBA, Vol. 14
(1892), p. 426, and also A. Gardiner, Egyptian Grammar, 31d ed. (revised,
London, 1973), pp. 197-99, and his marginal citations. See also Fig. IV.3 for
the diagram of the Horus eye with the indication of the parts of the Horus-cye
and their fractional values. As that diagram indicates, the whole eye is repre-

o

semedbymefollowingglyph:‘h.mpansofmheqal-manemmpre-
sented by parts of the glyph, i.c., 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 successively

u\esepansoftlzeglyph:qOND'\’q.
“"The heqat-measure is not mentioned in this problem, but it is clear that this
addition is understood since the problem obviously belongs to this group of
problems.
®See the enunciation of Problem 35, Here I have silently made the same
change since this change fits the meaning and the working out of the solution
of the problem.
*This is mistakenly written as 80 in the papyrus.
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*This is mistakenly given as 1/263, i.c., 265 with the fractional dot over it.
Furthermore, it is written in black rather than red, but 1 have rendered it in
boldface to help the reader.

5! Chace in his translation (Vol. 1, p. 81) discusses the procedure and its pecu-

liarities.

52See Chace, ibid,, p. 83, for a discussion of the numerical peculiarities of this

problem.

%3This is a simple division problem, namely, (50+4)—(50+6)= x. As the author
shows, the excess or difference of share for the group of 4 over the group of 6 is
4 1/6 loaves.

34 As Chace notes (bid.. p. 84) this problem is so simple as to be hardly worth-
while, He goes on to say: “It is possible that the author intended to state a
problem in arithmetical progression like the next one.” He also remarks that
“he (the author) considers the [group of] 4 first in the solution, although he puts
the [group of] 6 first in the statement,”

% As 1 have already remarked in note 44, this problem uses the technique of
false position to initiate the solution.

% See the discussion of the volume of a cylinder in the section “Volumes™ in
Chapter Four. 11 is evident that the volume of the cylinder is determined in this
problem by multiplying the area of the circular base by the altitude of the cylin-
der. It is also obvious that the area of the circle of diameter 9 is assumed to be
the square of side 8, i.c., 1/9 of the diameter is subtracted from it, leaving 8,
which is then squared. Looking at the other problems where the area of circles
is determined (for example see the next problem), the area of the circle is al-
ways calculated by subtracting 1/9 of the diameter (whatever it is, though it is
usually posed to be 9) and squaring the result.

5" This is exactly like the preceding problem except that the diameter is 10 in-
stead of 9, and thus involves the solution in many fractions. Notice that this
figure is written in the papyrus as 5900 heqat 1/4, the latter equates to 5900
heqat 25. Indeed we note that in the text there is no computation of the mul-
tiplication of 1/108 times 100. See Chace’s translation (/bid., p. 87) and his
note 2 to text of Problem 42 (Vol. 2, on the page facing Plate 64), for remarks
on the incompleteness and isregularities of calculation and notation here.

%8 See the discussion of the volume of a cylinder in khar in the geometric sec-
tion on Volumes in Chapter Four. This problem, which puzzied Egyptologists
in the form that exists in the papyrus, will first be given as in the papyrus, and
then followed by two reconstructions. While both are plausible, the second one,
constructed by Gillings, preserves much more of the text as found in the papy-
ms. It is obvious that the purpose of the problem is to present an example of a
method for directly finding the content or volume of a cylindrical granary in
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khar without first finding it in cubic cubits. Both reconstructions achicve that
end. Chace (Vol. 1, pp. 88-89) discusses Eisenlohr’s futile efforts to under-
stand this problem in its erroneous form.

*These are given as 1/2 and 1/4. But since they are fractions of 100, they in
fact equal the amounts | have given here in the translation.

“Cf. T.E. Peet, The Rhind Mathematical Papyrus (London, 1923), pp. 82-83
and Chace, op. cit,, Vol. |, p. 88. The method of finding the volume of a cy-
lindrical granary in khar directly without finding it first in cubic cubits, which
is the object of Problem 43 despite its textual confusions, is the same as that of
a problem in a fragmentary papyrus (Kahun, IV. 3) rendered in Document IV.3
below and discussed in the section on the volume of a cylinder in Chapter Four.
This reconstruction here in the second version of Problem 43 has the great dif-
ficulty of discarding the whole column of reckoning found in the papyrus, a
fault so grave as to cause us to reject this reconstruction. The pertineni brief
note of H. Schack-Schackenburg is “Die angebliche Berechnung der
Halbskugel,” Z4S. Vol. 37 (1899), pp. 78-79, where he notes that these data in
the Kahun fragment interpreted by Borchardt as concerning a hemisphere were
in fact concerned with the volumec of a cylinder with a “simplified”
{vereinfachte) calculation like that of Problem 43 in the Rhind Papyrus, “dabei
aber imrthimlich die bei friheren Rechnungsweise erforderliche Subtraction
von 1/9 des zu quadrirenden Durchmessers beibehalten, weshalb er nur 64/81
des richtigen Resultats erhalt.”

® R.J. Gillings, Mathematics in the Time of the Pharaohs (Dover ed., New
York, 1982), pp. 148-51. Gillings also secs the purpose of the problem to find
the volume of the cylinder in khar directly, he would make two essential
changes in the initial statement, first to change the diameter from 9 to 8, and
the second to remove the sentence and a half in the Rhind text that reads: “To
take away 1/9 from 9; the remainder is 8. Add to 8 its 1/3”; and insert instead:
“Add to the diameter its 1/3. This allows him to preserve all of the calcula-
tions added to the procedural paragraph in the Rhind Papyrus. Hence his pres-
entation is the more economical one and is to be preferred to the two preceding
versions.

“2This problem is the reverse of Problem 44.

€ Chace, Vol. 1, p. 90, adds: “Instead of taking 2/3 at the beginning to reduce
the contents to cubed cubits, as he would have done if he had exactly reversed
the process of the preceding solution, the author takes 2/3 of the last quotient to
find the last dimension.”

% There is here in the Rhind Papyrus a crude drawing of an octagon circum-
scribed by a square, as the reader can see in Fig. 2ii, Plate 70. In Chace's
translation he interpreted the problem as the comparison of a circle of diameter
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9, whose area was considered to be equal to (9-1)%, i.c., 64, which reflects a
formula found in the granary problems 41 and 42, and also in area Problem 50.
K. Vogel, Vorgriechische Mathematik, Teil | (Hannover, 1958) and, after him,
Gillings (op. cit.. p. 142) interpret the problem as a comparison of an a sym-
metrical octagon composed of five smaller squares of side 3 plus 4 half such
squares and the octagon’s circumscribed square of side 9. Vogel notes, how-
ever, that the area of such a square would be 63 not 64, but he considered that a
good enough approximation. Iam inclined to accept his view that we are con-
cerned with a square equal to the octagon which itself is approximately eqnal to
the inscribed circle, but I am doubtful about this interpretation of the numerical
approximation of octagon and square, because the numbers actually in the pa-
pyrus do not bear him out. The alternative method of showing graphically the
rough equality of octagon and circle and then computing the approximate
equality of the octagon to a square of side 8 proposed by Gillings (pp. 143-46)
is somewhat more interesting. See my discussion of this solution and the per-
haps better one of Guillemot in the section on areas in Chapter Four.

5 A setjat (st37) or setat (as Chace transliterates it) was a square khet, while a
khet was a unit of length of 100 cubits. See note 76 below.

% Chace (Vol. 1, p. 92) explains the calculation as follows: “The papyrus states
the problem for a field of 10 khet by 2 khet, and these numbers are in the fig-
ure, but the solution is for 10 khet by 1 khet, or 1,000 cubits by 100 cubits.
Multiplying these numbers together gives 100,000 square cubits [as in the third
line of the calculations]. Dividing this by 100 gives 1,000 cubit-strips [as in the
last line], strips 1 cubit wide and | khet long.”

“This is the conventional method of squaring a circle among the Egyptians,
namely, subtracting 1/9 of its diameter, and then squaring that remainder, as
we have explained in Chapter Four in the section on geometry.

% There are contrary views of whether “side™ or “height™ is meant here. See my
discussion of the area of a triangle in Chapter Four under the rubric “Ancient
Egyptian Geometry: Areas.” But let me add a few remarks here. If “height” is
meant, as 1 feel certain, then this is the conventional formula of A = 1/2 base
times altitude (with simply the base and altitude interchanged). This is my view
and that of Gunn and Peet, Struve, Gillings, Couchoud, and others (see Gil-
lings, op. cit., pp. 138-39). On the other hand, if it means “side,” this makes
the given calculation inaccurate. Chace (Vol. 1, p. 36) expresses this view as
follows: “In Problems 51-53 the Egyptian determines the area of a triangle by
multiplying 1/2 of its base, and the area of a trapezoid by multiplying 1/2 the
sum of its bases, by the length of a line (meret) which, so far as our present
knowledge goes, might be either the side or a line representing the altitude. 1n
the latter case he would be correct. In case the triangle is isosceles with a nar-
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row base as compared with its height, he would be nearly correct, even if meret
means side. Personally 1 am inclined to think that this word does mean side in
geometry, and that the author intended to consider only isosceles triangles with
narrow bases. In Problem 51 the base is comparatively narrow, 4, with meret
equal to 10.” (See also ibid.. pp. 132-34.) M. Guillemot, “A propos de la
géométric égyptienne,” pp. 129-35, afier careful treatment of the various terms
used in the problems devoted to triangles in both the Rhind Mathematical Pa-
pyrus and the Moscow Mathematical Papyrus, seems to conclude that Problem
51 of the former and Problem 4 of the latter do concern an isosceles triangle
and that the area of each as determined by the multiplication of one of the equal
sides by half the base is an acoeptable approximation, but that the triangles
given in Problems 7 and 17 in the Moscow Papyrus are right triangles, the area
of each of which is determined by 1/2 the product of the two sides containing
the right angle. But he is by no means dogmatic in his conclusions.

Off hand, it would surprise me that the author of Proposition 51 would
use the “side” as one of the multipliers in this fashion, since he was sophisti-
cated enough in the next problem to take 1/2 of the sum of the bases of a trape-
zo0id to find one side of the equivalent rectangle, but there are better arguments
than this. We have to consider that the author is thinking of converting the
triangle to a rectangle, where the computation is in terms of the sides of a rec-
tangle, a rectangle that must be half the size of a rectangle with the same height
and base as the triangle (as is evident from physical inspection). All of this is
discussed in Chapter Four above, as | have already indicated.

Of those views that support the conclusion that the meaning of meryt
in the determinatious of triangular areas is “height,” the most cogent to me is
the onc based on good philological reasoning, first proposed by B. Gunn in his
review of Peet’s edition and translation of the Rhind Papyrus in JEA, Vol. 12
(1926), p. 133, and then more briefly but more pointedly by Gunn and T.E.
Peet in their “Four Geometrical Problems from the Moscow Papyrus,” JEA,
Vol. 15 (1929), p. 173 (full article, pp. 167-85): “In the Rhind Papyrus, and in
Moscow Pap., Nr. 4, what we call the ‘height’ of a triangle is called the em-
rayet (mrjt), a word meaning, among other things, a ‘quay’ erected on 8 river
bank. A glance at Fig. | (=my Fig. 1V.4a) will show how appropriate the term
is; the ‘upper’ side AB of the triangle ABC appears as the sloping river-bank,
and the emrdyet is the horizontal quay above it.” For mryf as a quay, see Wb,
Vot. 2, p. 110 (top). Also see E.A.W. Budge, Egyptian Hieroglyphic Diction-
ary, p. 308a, and Peet, The Rhind Mathematical Papyrus (London, 1923), p.
91. See also S. Couchoud, Mathématiques égyptiennes, pp. 46-48.

W.W. Struve, Mathematischer Papyrus des Staatlichen Museums der
Schonen Kanste in Moskau (Berlin, 1930), pp. 123-34, discusses the similar
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problems on the area of a triangle in the Moscow Papyrus, with this conclusion
that the Egyptians did indeed computc the area of a triangle as 1/2 the base
times the altitude, holding this view against many of the carly Egyptologists
(see below Document [V.2, Problems 7 and 17) and my discussions of triangles
in the section on geometry in Document 1V.2.

For the three possible triangular figures being computed in Problem
51, and thus being discussed in this note, see Fig. [V.4b. For a possible graphic
discovery of the area of a scalene (riangle, see Fig. IV.4c based in part on
Problems 7 and 17 in Document IV.2.

Notice further that in this problem the calculation precedes the gencral
staternent in abnormal fashion.
@ Chace (Vol. 1, p. 92) explains the calculation as follows: “In the reckoning
he (the author) puts down the base as 400 and the side [height?] as 1000; that
is, he expresses these lengths in cubits. Dividing 400 by 2 he gets 200 and
1000 as the dimensions of the equivalent rectangle. Then to obtain the area
expressed as so many cubit-strips he multiplies 1000, not by 200, but by 2, as if
he thought of the rectangle as made up of 1000 pairs of cubit strips. Finally, he
writes down 2, that is, 20 setat (2 ten-setaf), as the standard form of expressing
the result.”
" The papyrus incorrectly has “20.” The phrase “100 setjat” appearing in the
translation is an interpretation of the “10 ten-sctjat” in parentheses. Notice
that again | prefer to render mryt as “height” by the same argument that 1 have
given in note 68. See also the discussion of Problem 52 in the geometry section
of Chapter Four.
" The enunciation of the problem is missing. Hence we must deduce the ob-
jectives of the problem from the two sets of calculations and the drawing that
appear in the papyrus. The drawing given in Fig. IV.2LL is reproduced and
enlarged in Fig. IV.5a, along with a copy of it having the hieratic numbers
translated into modern numerals. Clearly the figure as drawn is an isosceles
triangle. But the numbers given on the figure, if correct, make it impossible for
the figure with its three sectious to be an isosceles triangle. For example, the
two bases of the trapczoidal section to the far right cannot both be “6™ as they
are so marked, for then the trapezoid would be a rectangle instead of a trape-
2oidal section of the isosceles triangle. Similarly, the next trapezoid (in the
middle of the figure) with its two bases marked as “6™ and “2 1/4™ cannot be a
part of the whole triangular figure drawn as isosceles, if the isosceles triangular
section on the left has a base of “2 1/4™ and an altitude of “7” as so marked on
the drawing.... Hence if all the numbers are correct then the whole figure must
not be an isosceles triangle but rather a three-ticred figure compounded of a
rectangle, a trapezoid, and a triangle (see Fig. IV.5b). But even this unlikely
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conclusion stumbles over the errors in the first set of calculations, which we
assume to be the middle trapezoidal section, and see the next note. Incidentally,
Chace in his translation (Vol. 1, p. 94) interprets the trapezoidal-triangular
figure that is the object of this problem as an isosceles triangle and the “sides”
of the trapezoidal sections and of the triangular section as actually being sides
rather than altitudes. See my addition of Chace’s version of the first set of cal-
culations following Problem 33 in the text and Fig. IV.5c. This allows him to
reinterpret and alter the first set of calculations in the manner that he inter-
preted the calculations of the triangle and trapezoid in the two preceding prob-
lems. Thus the areas determined in his reconstruction are in error in the same
way as the triangle and trapezoid of the previons two problems. See notes 74
and 77 below for further comments on Chace’s reinterpretation.

"2Though we are not completely sure whence the number 4 1/2 came. 1t seems
likely that it was a mistake for 1/2 of the sum of the bases of the trapezoid,
which in fact equals 4 1/8 rather than 4 1/2. But once having used 4 1/2 in his
multiplications, he multiplied by the altitude (3 1/4) to get the first approxima-
tion to the trapezoidal area, which, however, he incorrectly computed or by a
slip of concentration gave 5 1/4 1/8, adding lines 1 and 4 of his calculating
table rather than lines 1, 2, and 4, which would have given the correct figure of
14 1/4 1/8. But remembering that he (or more likely the original author) had
taken a larger top base line than he should have, he corrected it by first taking
1/10 of the correct total (which was perhaps in his original copy) and then sub-
tracting that 1/10 from the correct total. This took him fairly close to the cor-
rect area of the middle trapezoidal section. See the next note for details.

If we gave this figure in setjat and its fractions, we would see that 1/10 of the
total (14 1/4 1/8) would be 1 1/4 1/8 1/16 1/40. But notice that the last two
fractions are approximated as 10 cubit strips (instead of 10 3/4 cubit-strips). 1
remind the reader that the “cubit-strip™ is 1 khet or 100 cubits long and 1 cubit
wide. The term “cubit-strip” is Chace’s (Vol. 1, p. 33). He adds to the defini-
tion; “100 cubit strips make a setar,” Hence the area of the trapezoid deter-
mined in this fashion would be about 10 cubit-strips less than 13 setjat. But if
we computed the area using the correct half of the sum of the two bases, i.e., 4
1/8, without needing to subtract anything, and multiplying that by the altitude 3
1/4, the area would be 13 //4 1/8 1/32 setjat.

" The reader should remember that Chace believed that the “T" was the side of
the triangular clement and not its altitude, However, in giving his description
of the lower trapezoid he speaks of 3 1/2 as “the height or side” and presumably
he would have made the same concession for the small triangle. If “7” is the
side and not the height, then the area computed is, of course, not the true area
and in fact is not a very good approximation.
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™ See notes 71, 74, and 77. Sce also the comments | have added in brackets
below this text of Chace’s proposed correction of the first set of calculations.

" The numbers | have given in Italics are given in boldface type by Chace in
his translation, Needless to repeat, | have usurped boldface type throughout my
version of the translation in order to represent rubrication used by the scribe of
the papyrus. Hence, my use of Italics for the signs for Horus-fractions and
other numbers which are given by Chace in boldface type.

" See Vol. 1, pp. 93-94.

™ The bracketed alternative is given by Chace in his translation (Vol. 1, p. 95).
Commenting on this problem and its successor Chace says (ibid., p. 96) the
following: “These two problems are simple division problems~10 is multiplied
50 as to get 7 and 5 50 as to get 3—and they have been translated both by Eisen-
lohr and by Peet, ‘Divide...into...fields.” But the preposition [Anf] sometimes
means from and does not mean into, and the verb a1 the beginning [Abe], which
is used several times in the papyrus, elsewhere always means fake away or
subtract. Gunn [‘Notices of recent publications,’) (page 133) has suggested
that these words can be used here with their ordinary meanings in the sense of
taking away an equal part from each field.

“In each of these problems a product and multiplier are given to find
the multiplicand. Problem 54 is, How large a field taken 10 times (once from
each of the given 10 ficlds) will make 7 setat, and Problem 35, How large a
field taken 5 times will make 3 setar? As the Egyptian cannot solve these
problems directly, he forms new ones in which the multipliers in these become
multiplicands and the answers are obtained first as multipliers....In writing
down the multiplications of these new problems he writes all of his numbers as
mere numbers, but in Problem 55 he writes first the statement of his new prob-
lem as a problem in setat. The answer to this new problem is 1/2 1/10, and if It
is taken as a problem in setat, the argument for the answer to the given prob-
lem will be, 1/2 1710 times 5 setat makes 3 setat, therefore S times 1/2 1/10 of a
setat (or as he has to write it, //2 setat 10 cubit-strips) will be 3 setat, and so
the answer to the given problem is //2 setat 10 cubit-strips,” [The fractions of
setjat in this answer is written by Chace in boldface, and I have written them in
Italics, following my convention. ]
™ Instead of the number “5” the papyrus has “1 setjat.”

% Again, I take the bracketed phrase from Chace. For an explanation of this
problem, see note 78, At this point the text literally says: “Perform the opera-
tion on 5 setjat for finding the area of 3 setjat.”

*! This phrase occurs following the literal sentence quoted in note 80,
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™ See notes 71, 74, and 77. See also the comments | have added in brackets
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" The numbers | have given in Italics are given in boldface type by Chace in
his translation, Needless to repeat, | have usurped boldface type throughout my
version of the translation in order to represent rubrication used by the scribe of
the papyrus. Hence, my use of Italics for the signs for Horus-fractions and
other numbers which are given by Chace in boldface type.

" See Vol. 1, pp. 93-94,
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Commenting on this problem and its successor Chace says (ibid., p. 96) the
following: “These two problems are simple division problems~10 is multiplied
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“In each of these problems a product and multiplier are given to find
the multiplicand. Problem 54 is, How large a field taken 10 times (once from
each of the given 10 ficlds) will make 7 setat, and Problem 35, How large a
field taken 5 times will make 3 setar? As the Egyptian cannot solve these
problems directly, he forms new ones in which the multipliers in these become
multiplicands and the answers are obtained first as multipllers....In writing
down the multiplications of these new problems he writes all of his numbers as
mere numbers, but in Problem 55 he writes first the statement of his new prob-
lem as a problem in setar. The answer to this new problem is 1/2 1/10, and if it
is taken as a problem in setat, the argument for the answer to the given prob-
lem will be, 1/2 1710 times 5 setat makes 3 setat, therefore S times 1/2 1/10 of a
setat (or as he has to write it, //2 setat 10 cubit-strips) will be 3 setat, and so
the answer to the given problem is //2 setat 10 cubit-strips.” [The fractions of
setjat in this answer is written by Chace in boldface, and 1 have written them in
Italics, following my convention. ]
™ Instead of the number “5™ the papyrus has “1 setjat.”

% Again, 1 take the bracketed phrase from Chace. For an explanation of this
problem, see note 78. At this point the text literally says: “Perform the opera-
tion on 5 setjat for finding the area of 3 setjat.”

*! This phrase occurs following the literal sentence quoted in note 80,
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2 As 1 noticed in Volume Two of my work (p. 76), the Egyptians not only used
the concept of slope in the determination of pyramids but also in their conical
water clocks.

®The slope is here the horizontal length for every cubit rise in height. 1t is
thus equivalent to the cotangent of the base angle of the faces of the pyramid
whose altitude is 250 cubits and whose base side is 360 cubits, i.c., the cotan-
gent of the base angle of the right triangle whose altitude is 250 cubits and
whose base side is 180 cubits. The solution is given in palms, where 1 cubit = 7
palms. See my brief discussion of this problem in Chapter Four under the rubric
“Volumes.” The pyramids found in these problems are all right pyramids. No-

tice that the! ' in seqed is rubricated. Note further that among the early histori-
ans the transliteration of the term was usually “seked.”

® The pyramid in this problem (when its measurements are converted to feet)
has a base-side of 618 fect and a height of 429 feet. The original height of the
Great Pyramid of Cheops at Giza was 481.4° and its base-side averaged 755.8".
See Gillings, Mathematics in the Time of the Pharaohs, p. 185 and LE.S. Ed-
wards, The Pyramids of Egypt (Harmondsworth, England, repr. 1975), p. 118.
* This problem is the inverse of the preceding one. Chace in his translation (p.
97) says thai here and in Problem “59B the author doubles the seked instead of
taking 1/2 of the side of the base, and instead of dividing the seked doubled by
7 and dividing the side of the base by the result, he divides 7 by the seked
doubled and multiplies the side of the base by the result, which amounts to the
same thing.”

% For the interchanging of numbers in the text, see Chace’s translation (p. 98).
7 This problem is the inverse of the preceding. See ibid.

* The word appears to be that of a pillar, but Peet, op. cit., pp. 100-02 suggests
a* cone” as a possibility and has a long discussion of the figure involved. As I
have already noted the ancient Egyptians were surely interested in inverted
conical water clocks and their slopes to find an even flow of water therefrom
(see note 82 above). If a cone is intended, then the expression “sentjet™ for base
would have to be the “diameter” and thus its 1/2 length the “radius.”

¥ Note that in the triangular figures of Plate 82, the base in each case is a sin-
gle line rather than the double base-lines of the pyramids in the illustrations of
the preceding problems. This might be regarded as support for considering
Problem 60 as being concerned with a cone rather than a pyramidal column or
illar.
g:Chaceinhistmnsla!ion(p.99)mys:"Intl\epapyms,inslmdofclivirlingtl\e
base of the right triangle by the other given line, the author divides the other
given line by the base. I follow Borchardt (1893) in treating this as a mistake.
At the end he does not multiply by 7 so as to express the seged in palms, as he
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2 As I noticed in Volume Two of my work (p. 76), the Egyptians not only used
the concept of slope in the determination of pyramids but also in their conical
water clocks.

®The slope is here the horizontal length for every cubit rise in height. It is
thus equivalent to the cotangent of the base angle of the faces of the pyramid
whose altitude is 250 cubits and whose base side is 360 cubits, i.c., the cotan-
gent of the base angle of the right triangle whose altitude is 250 cubits and
whose base side is 180 cubits. The solution is given in palms, where 1 cubit = 7
palms. See my brief discussion of this problem in Chapter Four under the rubric
“Volumes.” The pyramids found in these problems are all right pyramids. No-

tice that the!  in seqed is rubricated. Note further that among the early histori-
ans the transliteration of the term was usually “seked.”
® The pyramid in this problem (when its measurements are converted to feet)
has a base-side of 618 fect and a height of 429 feet. The original height of the
Great Pyramid of Cheops at Giza was 481.4" and its basc-side averaged 755.8°,
See Gillings, Mathematics in the Time of the Pharaohs, p. 185 and LE.S. Ed-
wards, The Pyramids of Egypt (Harmondsworth, England, repr. 1975), p. 118,
* This problem is the inverse of the preceding one. Chace in his translation (p.
97) says that here and in Problem “59B the author doubles the seked instead of
taking 1/2 of the side of the base, and instead of dividing the seked doubled by
7 and dividing the side of the base by the result, he divides 7 by the seked
doubled and multiplies the side of the base by the result, which amounts to the
same thing.”
® For the interchanging of numbers in the text, see Chace’s transtation (p. 98).
57 This problem is the inverse of the preceding. See ibid.
* The word appears to be that of a pillar, but Peet, op. cit., pp. 100-02 suggests
a*“ cone” as a possibility and has a long discussion of the figure involved. Asl
have already noted the ancient Egyplians were surely interested in inverted
conical water clocks and their slopes to find an even flow of water therefrom
(see note 82 above). If a cone is intended, then the expression “sentjet” for base
would have to be the “diameter” and thus its 1/2 length the “radius.”
% Note that in the triangular figures of Plate 82, the base in each case is a sin-
gle line rather than the double base-lines of the pyramids in the illustrations of
the preceding problems. This might be regarded as support for considering
Problem 60 as being concerned with a cone rather than a pyramidal column or
llar.

Chace in his translation (p. 99) says: “In the papyrus, instead of dividing the
base of the right triangle by the other given line, the author divides the other
given line by the base. I follow Borchardt (1893) in treating this as a mistake.
At the end he does not multiply by 7 so as to express the seged in palms, as he
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doces in the other problems.” 1 point out here that what the author has done by

his so-called mistake is to express the seqed as the tangent of the base angle

rather than as the cotangent.

% The table is not a part of the text. For the comments of Peet and his own

remarks concerning this table, see Chace’s translation (pp. 24-25, 100) and his

text (Vol. 2, page opposite Plate 83).

%2 Chace (Vol. 2, page opposite Plate 84, n. 10) notes that the text has “shaty,”

but that it ought to have “deben.” Incidentally, shaty (meaning “seal”) is a unit

of value and deben a unit of weight. 1 deben is about 91 grams.

%1t is clear the procedure for finding the answer here is like that of algebraic

“false position” used in “aha” problems (see notc 21 above).

% The procedure given here for finding the terms of an arithmetic progression

is essentially the same as that of the modern formulation; » = (S%) + (r-1)

(d/2), with h the highest term, S the sum of the terms, » the number of terms,

and d the common excess. Sce my discussion of this problem in Chapter IV.1

under the rubric “Arithmetic and Geometric Progressions.” A similar problem

is found in the Kahun fragments, Cols. 11-12, which see in Document IV.3,

and consult especially note 1 of that document. Notice that the fractions of the

heqat of barley given here are the so-called Horus-cye fractions and hence, as

everywhere, I render them here by Italics.

% The solution is again equivalent to the procedure of false position.

% Here is a convincing statement that rnpr was ofien (and no doubt, usually)

used for the whole civil year, i.c., for the 360 days of the months plus the 5 cp-

agomenal days. Sce the discussion in my Ancient Egyptian Science, Vol. 2, pp.

177-78, n. 2,

1 have added the checks to indicate the pertinent entries.

% As in Problem 6B, this is a specific indication that the problem and its solu-

tion show us how to do any similar problem. This indeed must be the purpose

of most of the problems, namely, to give a model solution of a particular kind of
em.

Note 1 have added “[with]” because in fact the problem docs not have the
objective of determining the value of the tribute~cattle, but rather with deter-
mining the size of the herd that produces the specified number of tribute-cattle.
Counting of the cattle of the land, presumably for tribute or tax purposes, goes
back to the carly dynasties and is mentioned in the Early Egyptian Annals (the
Palermo Stone), as | have noted in my Anclent Egyptian Science, Vol. 1, pp.
51-52.

1% Horus-eye fractions in the papyrus are given here in Italics, as always.
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does in the other problems.” 1 point out here that what the author has done by

his so~called mistake is to express the seqed as the tangent of the base angle

rather than as the cotangent.

% The table is not a part of the text. For the comments of Peet and his own

remarks concerning this table, see Chace's translation (pp. 24-25, 100) and his

text (Vol. 2, page opposite Plate 83).

%2 Chace (Vol. 2, page opposite Plate 84, n. 10) notes that the text has “shaty,”

but that it ought to have “deben.” Incidentally, shaty (meaning “seal”) is a unit

of value and deben a unit of weight. 1 deben is about 91 grams.

%1t is clear the procedure for finding the answer here is like that of algebraic

“false position” used in “aha” problems (see notc 21 above).

% The procedure given here for finding the terms of an arithmetic progression

is essentially the same as that of the modern formulation: » = (%) + (-1)

(d/2), with h the highest term, S the sum of the terms, # the number of terms,

and d the common excess. Sce my discussion of this problem in Chapter IV.1

under the rubric “Arithmetic and Geometric Progressions.” A similar problem

is found in the Kahun fragments, Cols. 11-12, which see in Document IV.3,

and consult especially note 1 of that document. Notice that the fractions of the

heqat of barley given here are the so-called Horus-cye fractions and hence, as

everywhere, I render them here by Italics.

% The solution is again equivalent to the procedure of false position.

% Here is a convincing statement that rnpt was ofien (and no doubt, usually)

used for the whole civil year, i.c., for the 360 days of the months plus the 5 cp-

agomenal days. Sce the discussion in my Ancient Egyptian Science, Vol. 2, pp.

177-78, n. 2.

1 have added the checks to indicate the pertinent entries.

% As in Problem 61B, this is a specific indication that the problem and its solu-

tion show us how to do any similar problem. This indeed must be the purpose

of most of the problems, namely, to give a model solution of a particular kind of
em.

Note 1 have added “[with]” because in fact the problem docs not have the
objective of determining the value of the tribute~cattle, but rather with deter-
mining the size of the herd that produces the specified number of tribute-cattle.
Counting of the cattle of the land, presumably for tribute or tax purposes, goes
back to the carly dynasties and is mentioned in the Early Egyptian Annals (the
Palermo Stone), as I have noted in my Ancient Egyptian Science, Vol. 1, pp.
51-52.

1% Horus-eye fractions in the papyrus are given here in Italics, as always.
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19! As Chace says in his translation (p. 105): “This problem is merely to divide
100 into four parts proportional to the numbers 12, 8, 6, and 4. The laborious
numerical calculations are due to the use of ‘Horus-cye’ fractions.”

192 Actually there is no check before the third multiplication, but obviously one
was intended since the addition of the products produces the correct answer.

1% As Chace reports in a note to his text (n. 2, page opposite Plate 91): “The
stem was originally fiw. Later the pronunciation of the first consonant was
probably changed to p and a p was added, although the f was retained in writ-
ing. Late writings show péw, with the unpronounced consonant abandoned.” (I
have used the transliterated letters p and f for Chaces “p” and “f”.) See the use
of pesu in the Moscow Papyrus (Doc. 1V.2, Problems 15 and 24) and the re-
marks of its editor W. W. Struve, Mathematischer Papyrus des Staatlichen
Museums der Schonen Kanste in Moskau (Berlin, 1930), pp. 45-49.

1% This term indicates inversely the strength of bread or beer afier it has been
cooked or brewed. Pefsu is the ratio of the number of loaves of bread or jugs of
beer produced to the number of heqat of grain used to produce them, Hence the
higher the pefsu number the weaker the product. Chace in his translation (p.
105) says that “It meant something like ‘cooking ratio,’ that is, the number of
units of food or drink that conld be made from a unit of material in the process
of cooking, and it determined the relative value of any food or drink.... We
may note that the lower the pefsu the more valuable the unit of food.” Notice
that the author solves first for the pefsu and then for the quantity of meal in
each loaf; hence he answers the second question first,

Problems 69-71 concern the finding of pefsu, while Problems 72-78 are de~
voted to reckoning the exchange of loaves of bread of differing pefsu or of beer
and bread of differing pefsu. Sce my discussion of these various problems in
Chapter Four under the rubric “Pefsu Problems.”

195 Again notice the use of the Horus-eye fractions, represented here by ltalics.
1% This first writing of 1/2 is mistakenly given in ordinary fractional signs; but,
as Chace points out, it should have been written with a Horus-eye sign; and so 1
have changed it to ltalics and added “[heqat],” as 1 have done eisewhere.
197 Gillings shows how this problem could have been solved by the finding of
the harmonic mean or average of the pefsus of the equal number of loaves for
which the original 1000 loaves were to be exchanged (op. cit., p. 131). Butitis
clear the arithmetic solution involving the determining of the harmonic mean
and its use is not quite like that by which the scribe did solve it.

See my analysis of the problem in Chapter IV under the rubric “Pefsu
Problems.(pp. 65-66).”
1% This problem reverses the direction of the exchange, namely, to find the
quantity of beer to exchange for the 100 loaves of bread.
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19 As Chace says in his translation (p. 105): “This problem is merely to divide
100 into four parts proportional to the numbers 12, 8, 6, and 4. The laborious
numerical calculations are due to the use of ‘Horus-eye® fractions.”
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have used the transliterated letters p and f for Chaces “p” and “f”.) See the use
of pesu in the Moscow Papyrus (Doc. 1V.2, Problems 15 and 24) and the re-
marks of its editor W. W. Struve, Mathematischer Papyrus des Staatlichen
Museums der Schonen Kanste in Moskau (Berlin, 1930), pp. 45-49.

1% This term indicates inversely the strength of bread or beer afier it has been
cooked or brewed. Pefsu is the ratio of the number of loaves of bread or jugs of
beer produced to the number of heqat of grain used to produce them. Hence the
higher the pefsu number the weaker the product. Chace in his translation (p.
105) says that “1t meant something like ‘cooking ratio,” that is, the number of
units of food or drink that conld be made from a unit of material in the process
of cooking, and it determined the relative value of any food or drink.... We
may note that the lower the pefsu the more valuable the unit of food.” Notice
that the author solves first for the pefsu and then for the quantity of meal in
each loaf: hence he answers the second question first,

Problems 69-71 concern the finding of pefsu, while Problems 72-78 are de-
voted to reckoning the exchange of loaves of bread of differing pefsu or of beer
and bread of differing pefsu. Sce my discussion of these various problems in
Chapter Four under the rubric “Pefsu Problems.”

195 Again notice the use of the Horus-eye fractions, represented here by ltalics.
1% This first writing of 1/2 is mistakenly given in ordinary fractional signs; but,
as Chace points out, it should have been written with a Horus-eye sign; and so 1
have changed it to ltalics and added “[heqat),” as 1 have donc elsewhere.
197 Gillings shows how this problem could have been solved by the finding of
the harmonic mean or average of the pefsus of the equal number of loaves for
which the original 1000 loaves were to be exchanged (op. cit., p. 131). Butitis
clear the arithmetic solution involving the determining of the harmonic mean
and its use is not quite like that by which the scribe did solve it.

See my analysis of the problem in Chapter IV under the rubric “Pefsu
Problems. (pp. 65-66).”
1% This problem reverses the direction of the exchange, namely, to find the
quantity of beer to exchange for the 100 loaves of bread.
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1%See my discussion of Problem 79 in Chapter Four under the rubric
“Arithmetic and Geometric Progressions, " pp. 58-60 and p. 106 n. 56. 1 men-
tion in the just cited note 56 that there have been efforts to connect the scries
expressed in this problem with the nursery rhyme beginning “As 1 was going to
St. lves....” and other problems of geometric progression that involve continual
multiplication and | also mentioned Chace’s notice of the remarks made by L.
Rodet on this problem. Here 1 point to an appendix to Rodet’s “Les prétendus
probiémes d’algtbre du Manuel du calculateur égyptien (Papyrus Rhind),”
Journal Asiatique, Series 7, Vol. 18 (1881), pp. 450-59, where he interprets the
problem as the summation of a geometric progression. He believes that this
problem resembles one in the medieval Liber abaci of Leonardo Fibonacci of
Pisa,. which also assumes the continuous multiplication by 7 when the first
term is 7. But his discussion docs not explain why the first table begins with
the number 2801.

11° While the Horus-cye fractions are noted in the parts of the eye as always, the
henu are given by the regular fractional signs.

"1 The first part is the same as the table in Problem 80, namely the figures for
the henu-equivalents of the Horus-cye fractions of a hegat. 1t should be noted
that the heqat measures of the henu never use the Horus-eye glyphs. Nor, in
fact, in the third columns of tables a—e, are fractions of a hegat ever written
with Horus-cye signs, but they are always given there in regular fractional
signs—cven when fractions are 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 in the first
column of each table.

112 Chace discusscs the various tables and notes that there are a few errors and
difficulties with the scribe’s writing; he has made the corrections that scemed
most probable.

113 Notice that the fractions of a heqat given in the third column of each of the
tables b—¢ are rubricated, and hence 1 have as usual given them in boldface.

13 problems 82-84 concern the calculation of the amount of food necessary for
birds and oxen. Chace gives an interesting evaluation of the problems on the
feeding of the birds on page 116 of his translation.

'3 The following birds are discussed by Peet, op. cit., p. 126.

116 See the textual corrections by Chace concerning this bird and the next.

"7 The rest of the first line in the papyrus is difficult and unintelligible, In fact
the whole problem is full of difficultics, See Chace’s text and translation and
Peet’s remarks on the same problem.

1% While | shall not treat of these additions, | note that the fragment in Number
87 includes the epagomenal days (i.c., at least the third and fourth of the epa-
gomenal days celebrating the Births of the Gods Seth and Isis) at the head of
the year, i.c., as the first part of the first month of the season of Akhet: (Chace’s
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1%See my discussion of Problem 79 in Chapter Four under the rubric
“Arithmetic and Geometric Progressions, " pp. 58-60 and p. 106 n. 56. 1 men-
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problem resembles one in the medieval Liber abaci of Leonardo Fibonacci of
Pisa,. which also assumes the continuous multiplication by 7 when the first
term is 7. But his discussion does not explain why the first table begins with
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11° While the Horus-cye fractions are noted in the parts of the eye as always, the
henu are given by the regular fractional signs.

"1 The first part is the same as the table in Problem 80, namely the figures for
the henu-equivalents of the Horus-cye fractions of a hegat. 1t should be noted
that the heqat measures of the henu never use the Horus-eye glyphs. Nor, in
fact, in the third columns of tables a—e, are fractions of a hegat ever written
with Horus-cye signs, but they are always given there in regular fractional
signs—cven when fractions are 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64 in the first
column of each table.

12 Chace discusscs the various tables and notes that there are a few errors and
difficulties with the scribe’s writing; he has made the corrections that scemed
most probable,

113 Notice that the fractions of a heqat given in the third column of each of the
tables b—¢ are rubricated, and hence 1 have as usual given them in boldface.

13 problems 82-84 concern the calculation of the amount of food necessary for
birds and oxen. Chace gives an interesting evaluation of the problems on the
feeding of the birds on page 116 of his translation.

"5 The following birds are discussed by Peet, op. cit., p. 126.

116 See the textual corrections by Chace concerning this bird and the next.

"7 The rest of the first line in the papyrus is difficult and unintelligible. In fact
the whole problem is full of difficulties. See Chace’s text and translation and
Peet’s remarks on the same problem.

1% While | shall not treat of these additions, | note that the fragment in Number
87 includes the epagomenal days (i.c., at least the third and fourth of the epa-
gomenal days celebrating the Births of the Gods Seth and Isis) at the head of
the year, i.c., as the first part of the first month of the season of Akhet: (Chace’s
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translation, p. 119) : “Year 11, first month of the inundation scason, third day,
Birth of Set; the majesty of this god caused his voice to be heard. Birth of Isis,
the heavens rained.” This bears on the discussion in Volume Two of my work

(pp. 178-79) concerning the positioning of these days at the head or at the tail
of the year.
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translation, p. 119) : “Year 11, first month of the inundation scason, third day,
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(pp. 178-79) concerning the positioning of these days at the head or at the tail
of the year.
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DOCUMENT IV.2
The Moscow Mathematical Papyrus: Introduction

The second most important mathematical document that
will help the reader understand the character and achievements of
ancient Egyptian mathematics is the mathematical papyrus of the
Museum of Fine Arts in Moscow. It is numbered 4676 in the in-
ventory and is part of the collection of W.S. Golenischeff' (also
transcribed as V.S. Golenishchev), and the first complete edmon of
its 25 problems was that prepared by W.W. Struve in 1930.! Go-
lenischeff bOught the papyrus in 1892/3 or 1893/4, telling us the
circumstances in a reply written in 1929 to a request for informa-
tion (concerning its discovery and purchase) from L.S. Bull:?

En réponse & la demande, que vous m’adresser, je ne puis
malheureusement vous donner qu’un bien maigre ren-
seignement. A un voyage, que je fis en Egypte, si je ne me
trompe, en 1892/3 (ou bien en 1893/4), j’ai eu I’occasion
d’acheter le petit papyrus mathématique chez Abd el-
Rasoul, un des fréres, qui autrefois avaient détenu le secret
de la cachette royale de Deir el-Bahari. C’était, si je m’en
souviens bien, 1’ainé des fréres, notamment celui qui aprés
une bonne bastonnade, avait dévoilé le secret, du temps de
Mr. Maspero, et qui, ayant plus tard regu, pour le petit dé-
rangement subi, une somme d’argent de la part du Gou-
vernement Egyptien, s’était bati une maisonnette au pied de
la colline de Sheikh Abd el-Qourna. Un jour, en revenant
d’une visite aux tombeaux de Qourna, je m’arrétai chez Abd
el-Rasoul, que je connaissais de longue date, et c’est lui qui,
au moment des adieux, m’offrit pour une somme assez
modique ce petit manuscrit. Lorsque je m’en rendis ac-
quereur, le papyrus n'était pas encore déroulé et c’est en
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relevant légérement I’extrémité libre du petit rouleau, que
dés le premier moment j’ai pu me rendre compte de I’intérét
exceptionnel qu’il présentait. Au dire du vendeur, ce manu-
scrit devait provenir de Dra Abou’l Negga, ce qui était
assez plausible autant par rapport 4 la paléographie du pa-
pyrus, que par rapport 3 I’dge de la nécropole de Dra
Abou’l Negga. Mais, comme ordinairement dans des cas
analogues, il ne faut pas prendre 4 la lettre les assertions des
fellahs, car tout naturellement ils tAchent de dissimuler
I’endroit de leurs fouilles clandestines et ils cherchent a
dépuister celui qui leur achéte des antiquités.

From this account it is evident that the papyrus came from a
tomb not too far from the place where the Rhind Papyrus was dis-
covered.® As the editor in the introduction to his translation and
commentary has shown by analyzing the paleography and orthogra-
phy, it is quite likely that the small Moscow Papyrus was written
down in Dynasty 13 and was dependent on some work (perhaps of
a different nature) written in Dynasty 12.* Hence the version pre-
sented here is perhaps not too far removed in time from the
“ancient copy” which was the source of the Rhind Mathematical
text.

The first mention of the Moscow Papyrus was that by M.
Cantor in the second edition of his Vorlesungen éiber Geschichte
der Mathematik, Vol. 1 (Leipzig, 1894), p. 23, who merely notes
that, in addition to the Rhind Papyrus, there was a mathematical
papyrus, which belonged to Wladimir Golenischeff. The first atten-
tion to the contents of the papyrus came in 1917 from B.A. Turaeff’
(Turaev), the conservator of the Egyptian section of the Moscow
Museum.® Tt dealt principally with Problem 14 of the papyrus (then
numbered 9 since the traces of problems found in accompanying
fragments were not counted) and concluded that the Egyptians used
a formula for the volume of a truncated square pyramid equivalent
to the multiplication of 1/3 of the altitude by the combined sum of
the areas of the two bases and the square root of their product, i.e.,
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similar to the formula V = (W/3) (a? + ab + b?) where h is the alti-
tude of the truncated pyramid and a and b are the sides of the bases.
The author believed that, if his explanation of the problem was cor-
rect, it presented a new and interesting fact, that Egyptian mathe-
matics yielded a problem [and its solution)] not yet found in Euclid.
We should also mention in passing the early collaboration of Turaev
with the mathematician D.P. Tzinserling (also transcribed as Tsin-
serling), who composed a paper in Russian on “Geometry in An-
cient Egypt” that embraced some of Turaev’s work on the Moscow
Papyrus.®

Before discussing the nature of the work given in the Mos-
cow Papyrus and comparing it with the mathematical work in the
Rhind Papyrus, let me list the problems in the order given in the
papyrus. In doing so, I follow the text of Struve,” which is based on
his interpretation of the full problems and fragments appearing in
the papyrus (so that often, as in the first two problems, the frag-
ments are so slight that their reconstructions by the editor are en-
tirely speculative, as will be clear to the reader who examines Fig.
IV.6a below).® Though I generally follow Struve, I have often re-
ferred to the extensive corrections and comments given by T.E.
Peet in his detailed and thoughtful review of Struve’s edition.”

Problem 1: An aha-problem (? i.e., perhaps one determining
an unknown quantity).

Problem 2: A ship’s part-problem (i.e., calculating a rud-
der).

Problem 3: Another ship’s part-problem (i.e., calculating a
mast).

Problem 4: Calculating the area of a triangle when its meryt
(probably its altitude) and its teper (base) are given.

Problem 5: A problem concerned with the exchange of 100
loaves of bread for jugs of beer, one involving both their pefsus.

Problem 6: Calculating the sides of a rectangle if its area
and the relation of its length to its breadth are given.

Problem 7: Calculating the altitude and base of a triangle
when its area and the relation of its altitude to its base are given.
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Problem 8: A pefsu-problem involving the exchange of
bread and beer (with the same numerical data as in Problem 5).

Problem 9: Another pefsu-problem (i.e., a problem involv-
ing a given amount of Upper-Egyptian grain to be made partly into
bread and partly into beer).

Problem 10: Calculation of the surface of a basket (i.e., of a
hemisphere, or, possibly, that of a semi-cylinder; see translation and
discussion below).

Problem 11: A baku-problem (i.e., calculating the out-put of
a worker using a pehedet-basket).

Problem 12: Another pefsu-problem.

Problem 13: Still another pefsu-problem, the numerical data
being the same as in Problem 9.

Problem 14: Calculation of the volume of a frustum of a
square pyramid.

Problem 15: An elementary pefsu-calculation.

Problem 16: A pefsu-problem.

Problem 17: Calculating the altitude and base of a triangle
when its area and the ratio of its base to its altitude is known.

Problem 18: An area-problem involving the area of a strip
of cloth (7).

Problem 19: A simple quantity-problem (i.e., an aha-prob-
lem, with the solution indicated).

Problem 20: A pefsu-problem involving loaves of bread and
the use of Horus-eye fractions.

Problem 21: A calculation (concerning offering-bread).

Problem 22: A pefsu-problem (i.e., one concerning the pro-
duction of bread and weak beer from 10 heqat of Upper-Egyptian
grain),

Problem 23: A baku-problem (i.e., calculating the output of
a shoemaker).

Problem 24: A simple pefsu-problem involving the exchange
of bread and beer.

Problem 25: A simple aha-problem with its solution clearly
given,
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As Struve remarks, the first thing that strikes the reader
when he sees the order of the problems presented in the Moscow
Papyrus is its complete lack of system. It contrasts strongly with
the rather orderly arrangement of the problems in the Rhind
Mathematical Papyrus. This leads to the conclusion that the author
of the Moscow Papyrus was a student whose training had pro-
gressed far enough for the teacher to present various problems to
be solved in order to test the skill of the student. The student was
apparently not required to present in tabular form, like that found in
the Rhind Papyrus, the steps by which the multiplications were car-
ried out, i.e., the doublings, halvings, taking of 2/3 and/or 1/3, and
decemplex-multiplications, but rather just to give the results of such
multiplications, Still, required or not, such is the abbreviated form
in which the solutions are presented in the Moscow tract. However,
certain standard forms of terminology and presentation for different
kinds of problems are evident in the Moscow Papyrus. Struve in
his edition (pp. 12-33) has described the standard phrases in detail.
Since I have often added transcriptions as well as translations of
them in my document below, where the context and type of prob-
lem is evident, I shall not repeat his detailed analysis here. Struve
also includes a useful glossary (pp. 187-93).

We should note finally that Struve, in his translation and
commentary, does not present the problems in the chaotic order
found in the papyrus, but instead he groups together problems of
the same type: e.g., [1] problems concerned with ship-parts (pp. 41-
44), [2] problems involving bread and beer; their cooking-ratios
(pefsu), the exchange of one for the other, the quantities of grain
involved in their preparation, and so on (pp. 44-98), [3] sheben-
problem, no. 21, closely related to the pefsu problems (pp. 98-101);
[4] baku-problems (pp. 101-10); [5] aha-problems (pp. 110-17); [6]
volume- and area-problems (pp. 117-69).

I remind the reader that the most important contributions of
the Moscow Papyrus are found in the geometrical problems.
Among them we can especially note [1] Problem 10, which perhaps
concerns the determination of the area of the curved surface of a
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hemisphere, as Struve, and later Gillings, believed, but which Peet
strongly rejected, or the area of the curved surface of a semi-
cylinder, which Peet thought to be more probable, or perhaps in-
deed some other figure, and [2] Problem 14, the volume of the
frustum of a pyramid. These problems and their solutions are dis-
cussed below in notes 18 and 24 and above in Chapter Four under
the rubric “Volumes.” The features of other interesting problems
will be noted in the course of my translation.

Finally the reader will see that I have followed the same
practices in my translation of this document as in that of the first
one. Though I did not have access to any colored photographs of
the Moscow Papyrus, I have assumed that Struve was correct in
considering the first or title line of each problem as being rubricated
(but he underlined the title-lines of the first 16 problems but not
those of the last 9). Hence I have followed the procedure of
Document IV.1 and given the lines underlined by Struve here in
bold-faced type. The words and phrases that are bracketed in my
translation indicate that I have added something not specifically in
the text in the papyrus. Generally the addition will be clear to the
reader from the hieroglyphic transcription given by Struve beneath
the hieratic text in Figs. IV.6a-IV.6t, or it will be made clear by the
discussion in the endnotes. I have also added in brackets the col-
umn and the line numbers for each column of the papyrus. I con-
sidered this procedure to be unnecessary in presenting Document
IV.1, but here there is so much discussion in the notes of possible
other interpretations and readings in Document IV.2 that I thought
the numbers would be useful.

Notes to the Introduction to Document IV.2

! Mathematischer Papyrus des Staatlichen Museums der Schone Kanste in
Moskav. (Berlin, 1930), QSGAM. Abt. A: Quellen, Vol. 1 (1930). For a de-
scription of the reconstructed papyrus of 45 columns, see pp. 5-7. The true size
of the original papyrus is not accurately known because of the existence of the
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additional fragments, but it was approximately as long as the Rhind Papyrus,
but only 8 cm high (cf. O. Neugebauer, Vorlesungen aber Geschichte der an-
tiken Mathematischen Wissenschaflen. Erster band: Vorgriechische Mathe-
matik [Betlin, 1934), p. 110).

*This letter was included by R.C. Archibald in the supplemental bibliography
printed at the end of Vol. 2 of Chace’s edition of the Rhind Papyrus, under the

;'m 1930.

See the text over note 1 to the Introduction of Document IV.1.
“Struve, op. cit. in note 1, pp. 7-12, 38-40.
$B.A. Turaeff ( or Turcjeff or Turaev), “The Volume of the truncated pyramid
in Egyptian Mathematics,” Ancient Egypt (1917), pp. 100-02: “In the collection
formerly belonging to Mr. Golenistsheff (!) and recently acquired by the Mu-
scum of Fine Arts in Moscow, there is a Mathematical Papyrus of thirty-six
columns, in hieratic writing of the epoch of the late Middle Empire. Pale-
ographically it is like some of the Illahun papyri, whilst the breadth of its leaves
brings it near to the MSS. of Sinuhe, found in the Ramesseum. This papyrus
contains nincteen problems, some of which give us new types of calculation
unknown till now, and therefore somewhat difficult to comprehend. Four of
these problems are geometrical ones. The first shows how to define the length
of the sides of a quadrilateral, when the relation of the sides and the area of the
quadrilateral are known. The two next give a method of calculating the area of
a triangle: a method already known to us. The fourth presents us, I am inclined
to think, with something allogether new in Egyptian scientific literature.” In
determining the number of problems as 19, he has not considered the frag-
ments; as Struve did when he later showed, by considering them, that 25 prob-
lems were originally given. After these opening remarks, Turaev gives a hi-
emglyplnc transcription and an English translation of the fourth geometrical
problem, i.c., Problem 14 in Struve’s later numbering. Turaev proposes cor-
tealylhatlhisproblempmsmeeomctdelemimﬁon of the volume of a
frustum of a square pyramid. The author then concludes his paper by saying:
“If only our explanation of the problem be right, we have here a new and inter-
esting fact, i.e., the presence in Egyptian mathematics of a problem that is not
to be found in Euclid.”
D.P. Tsinserling, “Geometriya u drevnikh egiptyan,” Bulletin de I’Académie
des Sciences de |'Union des Republiques Soviétiques Socialistes, Lenigrad,
scries 6, Vol. 19 (1925), pp. 541-68. Among other subjects, this paper included
Turaev's hieroglyphic transcriptions of Problems 1, 2, 12, 15 (old numbering,
6, 7, 17, and 21 in Struve’s edition of the Moscow Papyrus.) See Archibald’s
summary of this paper in Chace's edition of the Rhind Papyrus, Vol. 1, pp.
187-88. See also the mention of Tzinserling by Struve in op. cit. in note 1, pp.
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summary of this paper in Chace's edition of the Rhind Papyrus, Vol. 1, pp.
187-88. See also the mention of Tzinserling by Struve in op. cit. in note 1, pp.
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VII-VIII, and particularly the thanks Struve tends to him for their fruitful con-
versations,

7 See the opus cit. in note | above, pp. 37-38.

*R.). Gillings, Mathematics in the Time of the Pharaohs, Dover edition (New
York, 1982), pp. 246-47, slightly corrected from the original edition
(Cambridge, Mass., 1972), has a convenient listing of the problems of the Mos-
cow Papyrus which notes those that are not clear cither because they are frag-
mentary or for some other reason. His list also gives the numerical form of the
problem where possible. At the end of the list (p. 247), he makes the following
comments [with the numbers in square brackets giving the total number of
problems to which each comment refers):

“On analysis of these problems we find,

“[2 probiems] Nos. 1 and 2 are not readable.

“[11] Five problems (8, 9, 13, 22, 24) on the pesus [Ed. given in my
volume throughout as “pefsu™ or “pefsus™] of loaves and beer are not perfectly
clear. Three problems (5, 20, 21) deal with the pesu of loaves only. They are
difficult to understand. Three problems (12, 15, 16) deal with beer and its pesu
only. They are clear and simple.

*“[6] Three treat the area of a triangle. No. 4 merely finds the area of a
right triangle, while Nos. 7 and 17 are equivalent to the solution of two simul-
tancous equations, onc of the second degree. Two problems (19, 25) concern
the solution of equations of the first degree, which are very simple, and No. 6 is
on simultaneous equations, one of the second degree.

“(4] Problems 3, 11, 18, and 23 are miscellancous problems, none of
which is entirely clear.

“[2] No. 14 on the volume of a truncated pyramid is a most important
problem in the history of Egyptian mathematics. 1t has no counterpart in any
other mathematical papyrus. No. 10 deals, I consider, with the area of the sur-
face of a hemisphere, as Struve thought, and if this is so, it becomes the out-
standing Egyptian achievement in the ficld of mathematics.”

SJEA, Vol. 17 (1931), pp. 134-60.
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face of a hemisphere, as Struve thought, and if this is so, it becomes the out-
standing Egyptian achievement in the ficld of mathematics.”

SJEA, Vol. 17 (1931), pp. 134-60.

212



DOCUMENT IV.2: MMP

DOCUMENT V.2
The Moscow Mathematical Papyrus
[Problem 1; see Fig. IV.6a, Col. I]*
[Lin. 1] ..o it is [subtracted] from what?
Lin. 2] oo, it is [subtr]acted from what?
[Lin. 3] e [the resul]t is 5.
[Lin. 4] oo,

[Problem 2; see Fig. IV.6a, Col. I’
(Lin. 1] Example of [the calculation (ir)] of a ship’s rudder

(4rw) TrOMcececcscassrssass
[Lin. 2] If someone says [to you): “[Take] a ship’s rudder [made]

[Problem 3; see Fig. IV.6a, Col. llI]'

[Lin. 1] Example of the calculation of a ship’s mast from a ce-
dar log.

{Lin. 2] If someone says to you: “[Make] a mast from a cedar log
30 cubits

[Lin. 3] long [such that the mast] is 1/3 1/5 (?) [of the length of the
log).” Calculate 1/3 1/5 of this 30.

(Lin. 4] [If the result is 16, say to him:] “You have obtained

[Lin. 5] [this mast. You have found it] correctly.”

[Problem 4; see Fig. IV.6b, Cols. IV-V: see the triangular figure in

Col. V with the calculations below it. |’
{Lin. 1] Example of the calculation of [the area of] a triangle.
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(Lin. 2] [If someone says to you:] “[Assume] a triangle of 10
[khet] on the [mr]yt (i.e., most likely the “altitude’ or ‘kathete’)
[Lin. 3] and 4 [khet] on the base. [Make] known to me

[Lin. 4] [its area.” Take 1/2 of ] this [4,]

(Lin. 5] [namely 2, in order to get one side of its equivalent rec-
tangle. Multiply 10, the other side of the rectangle,] times 2.

{Lin. 6] (It becomes 20. Its area] is this.

[Problem 5; see Fig. IV.6b, Cols. VI-VII]
[Col. V1]

{Lin. 1] Example of calculating 100 loaves of bread of pefsu 20,
(Lin. 2] If someone says t[o you]: “[You have] 100 loaves of bread
of pefsu 20,

[Lin. 3] [they] have been exchanged® for beer of pefsu 4,

[Lin. 4] [the beer being like the 1/2 1/4 kind of beer’ ], [How is it
to be calculated?]” [First] calculate the quantity of flour] needed
[Lin. 5] [for these 100 loaves of bread] of pefsu 20. The result is 5
heqat.

[Lin. 6] [For this weaker beer that is like 1/2 1/4 beer, you seek]
what you need for 1 [ des-jug].

{Lin. 7] The result is 1/2 [of what you need for a 1 des-jug of beer
made from Upper-Egyptian grain).

[Col. VII]

[Lin. 1] Calculate

[Lin. 2] 1/2 of § heqat. The result is
{Lin. 3] 2 1/2 heqat. Multiply

[Lin. 4] 2 1/2 times 4.

{Lin. 5] The result is 10 [des-jugs).
(Lin. 6] Behold this is its beer quantity.
[Lin. 7] You will find it [to be correct].

[Problem 6; see Fig. IV.6c, Col. VIIIJ
(Lin. 1] Example of calculating a rectangle.
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(Lin. 2] [If someone says to you:] “[Assume] a triangle of 10
[khet] on the [mr]yf (i.e., most likely the “altitude’ or ‘kathete’)
[Lin. 3] and 4 [khet] on the base. [Make] known to me

[Lin. 4] [its area.” Take 1/2 of ] this [4,]

[Lin. 5] [namely 2, in order to get one side of its equivalent rec-
tangle. Multiply 10, the other side of the rectangle,] times 2.

{Lin. 6] (It becomes 20. Its area] is this.

[Problem 5; see Fig. IV.6b, Cols. VI-VII]

[Col. V1]

{(Lin. 1] Example of calculating 100 loaves of bread of pefsu 20,
(Lin. 2] If someone says t[o you]: “[You have] 100 loaves of bread
of pefsu 20,

[Lin. 3] [they] have been exchanged® for beer of pefsu 4,

[Lin. 4] [the beer being like the 1/2 1/4 kind of beer’ ], [How is it
to be calculated?]” [First] calculate the quantity of flour] needed
[Lin. 5] [for these 100 loaves of bread] of pefsu 20. The result is 5
heqat.

[Lin. 6] [For this weaker beer that is like 1/2 1/4 beer, you seek]
what you need for 1 [ des-jug].

{Lin. 7] The result is 1/2 [of what you need for a 1 des-jug of beer
made from Upper-Egyptian grain).

[Col. VII]

[Lin. 1] Calculate

[Lin. 2] 1/2 of § heqat. The result is
{Lin. 3] 2 1/2 heqat. Multiply

[Lin. 4] 2 1/2 times 4.

{Lin. 5] The result is 10 [des-jugs).
(Lin. 6] Behold this is its beer quantity.
[Lin. 7] You will find it [to be correct].

[Problem 6; see Fig. IV.6c, Col. VIIIJ
(Lin. 1] Example of calculating a rectangle.
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[Lin. 2] If someone says to you: “A rectangle 12 setjat® [in area]
[has] a breadth 1/2 1/4 of its length. [Calculate its area.]”

{Lin. 3] Calculate 1/2 1/4 to get 1. The result is 1 1/3.

[Lin. 4] Take this 12 setjat 1 1/3 times. The result is 16.

[Lin. 5] Calculate its square root.'® The result is 4 for its length;
[and] 1/2 1/4 of it is 3 for

[Lin. 6] the breadth."" The correct procedure is as follows [see the
rectangle in line 6 of column VIII in Fig. IV.6¢c, marked with the
area of 12 in the center, the length of 4 above, and the breadth of 3
on the left side. The figure illustrates the problem and represents a
kind of proof. Then follows the calculation of the area, which
shows that 3 x 4 does indeed equal 12, the specified area):

VvV 4
\2 8
[Total: 12].

[Problem 7; see Fig. IV.6c, Col. IX]"

[Lin. 1] Example of calculating a triangle.

[Lin. 2] If someone says to you: “[There is] a triangle'® with area
of 20 [setjat] and ‘bank’ (Idb, i.e., the ratio of height to base) of 2
1/2.”

[Lin. 3] Double the area. The result is 40. Take it 2 1/2 times.

[Lin. 4] The result is 100. Take the square root; the result is 10.
Call up 1 from 2 1/2.

[Lin. 5] The result is 1/3 1/15. Apply this to 10. The result is 4.

[Lin. 6] [Hence it is] 10 [khet] in the length (i.e., kathete) and 4
[khet] in its breadth.'

[Problem 8; see Fig. IV.6d, Cols. X-X1]"’

[Col. X]

[Lin. 1] Example of calculating 100 loaves of bread of pefsu 20.
[Lin. 2] If someone says to you: “[You have] 100 loaves of bread
of [pefsu] 20

[Lin. 3] to be exchanged'® for beer of pefsu 4

[Lin. 4] like 1/2 1/4 malt-date beer.”
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[Lin. 2] If someone says to you: “A rectangle 12 setjat’ [in area)
[has] a breadth 1/2 1/4 of its length. [Calculate its area.]”

{Lin. 3] Calculate 1/2 1/4 to get 1. The resultis 1 1/3.

[Lin. 4] Take this 12 setjat 1 1/3 times. The result is 16.

[Lin. 5] Calculate its square root.'® The result is 4 for its length;
[and] 1/2 1/4 of it is 3 for

[Lin. 6] the breadth." The correct procedure is as follows [see the
rectangle in line 6 of column VIII in Fig. IV.6c, marked with the
area of 12 in the center, the length of 4 above, and the breadth of 3
on the left side. The figure illustrates the problem and represents a
kind of proof Then follows the calculation of the area, which
shows that 3 x 4 does indeed equal 12, the specified area]:

V1 4
\ 2 8
[Total: 12].

[Problem 7; see Fig. IV.6c, Col. IX]"

(Lin. 1] Example of calculating a triangle.

[Lin. 2] If someone says to you: “[There is] a triangle'® with area
of 20 [setjat] and ‘bank’ (idb, i.e., the ratio of height to base) of 2
172"

[Lin. 3] Double the area. The result is 40. Take it 2 1/2 times.

[Lin. 4] The result is 100. Take the square root; the result is 10.
Call up 1 from 2 1/2.

[Lin. 5] The result is 1/3 1/15. Apply this to 10. The result is 4.

[Lin. 6] [Hence it is] 10 [khet] in the length (i.e., kathete) and 4
[khet] in its breadth.'

[Problem 8; see Fig. IV.6d, Cols. X-X1]"’

[Col. X]

{(Lin. 1] Example of calculating 100 loaves of bread of pefsu 20.
[Lin. 2] If someone says to you: “[You have] 100 loaves of bread
of [pefsu] 20

[Lin. 3] to be exchanged'® for beer of pefsu 4

[Lin. 4] like 1/2 1/4 malt-date beer.”
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(Lin. 5] [First] calculate the [grain] required for the 100 loaves of
bread of pefsu 20.

[Lin. 6] The result is 5 [heqat]. [Then] reckon what you need for a
1 des-jug of the beer [like] the beer [called] 1/2 1/4 malt-date beer.

[Lin. 7] The result is 1/2 [of the heqat-measure needed for 1 des-
jug of beer made from Upper-Egyptian grain).

[Col. X1]

[Lin. 1] Calculate 1/2 of 5 [heqat]. The result will be 2 1/2.
{Lin. 2] Take this 2 1/2 four times.

(Lin. 3] The result is 10. Then you say to him:

(Lin. 4] “Behold! Its beer quantity is found to be correct.”

[Problem 9; see Figs. IV.6e-f, Cols. XII-XVII]

[Col. X11)

(Lin. 1] Calculating [16] hegat of Upper-Egyptian grain for
bread and for beer. !’

{Lin. 2] If someone says to you: “[You have] 16 hegat of Upper-
Egyptian grain; calculate the amount for 100 loaves of bread of
pefsu 20,

(Lin. 3] leaving the rest for beer of 2 pefsu,

[Lin. 4] of 4 pefsu,

(Lin. 5] and of 6 pefsu
[Lin. 6] [like] 1/2, 1/4 malt-date beer.”

[Col. X11I)

(Lin. 1] [First] Reckon the required amount of grain for the 100
loaves of bread of pefsu 20.

[Lin. 2] It is 5 heqat of Upper-Egyptian grain. Calculate the re-
mainder

[Lin. 3] from the 16 heqat of Upper-Egyptian grain. The result is
11 heqat of Upper-Egyptian grain.

(Lin. 4] You say to him: “The 11 heqat of Upper-Egyptian grain is
what is turned into
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(Lin. 5] [First] calculate the [grain] required for the 100 loaves of
bread of pefsu 20.

[Lin. 6] The result is 5 [heqat]. [Then] reckon what you need for a
1 des-jug of the beer [like] the beer [called] 1/2 1/4 malt-date beer.

[Lin. 7] The result is 1/2 [of the heqat-measure needed for 1 des-
jug of beer made from Upper-Egyptian grain).

[Col. X1]

[Lin. 1] Calculate 1/2 of S [heqat]. The result will be 2 1/2.
{Lin. 2] Take this 2 1/2 four times.

(Lin. 3] The result is 10. Then you say to him:

(Lin. 4] “Behold! Its beer quantity is found to be correct.”

[Problem 9; see Figs. IV.6e-f, Cols. XII-XVII]

[Col. X11)

(Lin. 1] Calculating [16] hegat of Upper-Egyptian grain for
bread and for beer. !’

{Lin. 2] If someone says to you: “[You have] 16 hegat of Upper-
Egyptian grain; calculate the amount for 100 loaves of bread of
pefsu 20,

(Lin. 3] leaving the rest for beer of 2 pefsu,

[Lin. 4] of 4 pefsu,

(Lin. 5] and of 6 pefsu
[Lin. 6] [like] 1/2, 1/4 malt-date beer.”

[Col. X11I)

(Lin. 1] [First] Reckon the required amount of grain for the 100
loaves of bread of pefsu 20.

[Lin. 2] It is 5 heqat of Upper-Egyptian grain. Calculate the re-
mainder

[Lin. 3] from the 16 heqat of Upper-Egyptian grain. The result is
11 heqat of Upper-Egyptian grain.

(Lin. 4] You say to him: “The 11 heqat of Upper-Egyptian grain is
what is turned into
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[Col. XIV

[Lin. 1] beer of pefsu 2,
[Lin. 2] of pefsu 4,

[Lin. 3] of pefsu 6,

[Lin. 4] like 1/2 1/4 malt-
[Lin. 5] date beer.”

[Col. XV]

(Lin. 1] [First] reckon the grain required [for 1 des-jug of the beer
of] pefsu2. The result is 1/2.

(Lin. 2] Reckon the grain required [for 1 des-jug of the beer of]
pefsu 4. The result is 1/4.

[Lin. 3] Reckon the grain required [for 1 des-jug of the beer of]
pefsu 6. The result is 1/6.

[Lin. 4] Add them together. The result is 2/3 1/4.

[Lin. 5] Take 2/3 1/4 two times, because it was said to him,

[Col. XVI]

(Lin. 1] [it is like] 1/2 1/4 malt-
{Lin. 2] date beer.

{Lin. 3] The result is 1 2/3 1/6.

[Lin. 4] Calculate with 1 2/3 1/6
[Lin. 5] to find 11,

[Col. XVIT)
[Lin. 1] which resulted as the remainder from those 16 heqat of the

Upper-Egyptian grain after these 5 heqat of the Upper-Egyptian
grain [were used for bread).

[Lin. 2] The result is 6. Say to him. “Behold! This is what has
been brought (!, but actually, what can be produced) of each [beer
of varying] pefsu, [namely,]

[Lin. 3] 6 1-des-jugs of beer of each pefsu.

[Lin. 4] You know it. You have what it is.

[Lin. 5] Proceeding in the manner that has been developed, you
will find [it to be correct].”
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[Col. XIV

[Lin, 1] beer of pefsu 2,
[Lin. 2] of pefsu 4,

[Lin. 3] of pefsu 6,

[Lin. 4] like 1/2 1/4 mak-
[Lin. 5] date beer.”

[Col. XV]

[Lin. 1] [First] reckon the grain required [for 1 des-jug of the beer
of] pefsu 2. The result is 1/2.

(Lin. 2] Reckon the grain required [for 1 des-jug of the beer of]
pefsu 4. The result is 1/4,

[Lin. 3] Reckon the grain required [for 1 des-jug of the beer of]
pefsu 6. The result is 1/6.

[Lin. 4] Add them together. The result is 2/3 1/4,

[Lin. 5] Take 2/3 1/4 two times, because it was said to him,

[Col. XVI]

{Lin, 1] [it is like] 1/2 1/4 malt-
{Lin. 2] date beer.

{Lin. 3] The result is 1 2/3 1/6.
[Lin. 4] Calculate with 1 2/3 1/6
[Lin. 5] to find 11,

[Col. XVII]
[Lin. 1] which resulted as the remainder from those 16 heqat of the

Upper-Egyptian grain after these 5 heqat of the Upper-Egyptian
grain [were used for bread].

[Lin, 2] The result is 6. Say to him, “Behold! This is what has
been brought (!, but actually, what can be produced) of each [beer
of varying) pefsu, [namely,]

{Lin. 3] 6 1-des-jugs of beer of each pefsu.

[Lin. 4] You know it. You have what it is.

[Lin. 5] Proceeding in the manner that has been developed, you
will find [it to be correct].”
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[Problem 10 following the text and to some extent the German
translation of Struve; see Fig. IV.6g, Cols. XVIII-XX; cf. Fig. IV.7]
[Col. XvII)®

g

(Lin. 1] Example of calculating a basket (o !, nbr) [assumed by
Struve as hemispheric in shape; see Fig. IV.8]

[Lin. 2] If someone says to you: “A basket with a mouth opening
{Lin. 3] of 4 1/2 (i.e., a diameter of this size) in good condition
(‘. oh

[Lin. 4] let me know its [surface] area (3h1).”

[Lin. 5] [First] calculate 1/9 of 9, since the basket is

[Lin. 6] 1/2 of an egg-shell (? inr?). The resultis 1.

[Col. X1X]

{Lin. 1] Calculate the remainder as 8.

(Lin. 2] Calculate 1/9 of 8.

(Lin. 3] The result is 2/3 1/6 1/18. Cal-

{Lin. 4] culate the remainder from these 8 after

{Lin. 5] taking away those 2/3 1/6 1/18. The result is 7 1/9.

[Col. XX]

{Lin. 1] Reckon with 7 1/9 four and one-half times.
{Lin, 2] The result is 32, Behold, this is its area,
{Lin. 3] You will find that it is correct.

[An interpretation of Problem 10 as concerned with the area of the
curved surface of a half-cylinder outlined by T. E. Peet, “A Problem
in Egyptian Geometry,” JEA, Vol. 17 (1931), pp. 104-06, and p.
105. Peet included the following translation, with the lines num-
bered consecutively rather than by each of the papyrus columns:'?]

1. Example of working out a semi-cylinder.

2. If they say to you, A semi-cylinder <of 4 1/2> in diameter
3. by 4 172 in height; pray
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[Problem 10 following the text and to some extent the German
translation of Struve; see Fig. IV.6g, Cols. XVIII-XX; cf. Fig. IV.7]
[Col. XvII)®

g

(Lin. 1] Example of calculating a basket (= !, nbt) [assumed by
Struve as hemispheric in shape; see Fig. IV 8]

[Lin. 2] If someone says to you: “A basket with a mouth opening
{Lin. 3] of 4 1/2 (i.e, a diameter of this size) in good condition
(d), oh

[Lin, 4] let me know its [surface] area (3h1).”

[Lin. 5] [First] calculate 1/9 of 9, since the basket is

[Lin. 6] 1/2 of an egg-shell (? inr?). The result is 1.

[Col. X1X]

{Lin. 1] Calculate the remainder as 8.

[Lin. 2] Calculate 1/9 of 8.

{Lin. 3] The result is 2/3 1/6 1/18. Cal-

{Lin. 4] culate the remainder from these 8 after

[Lin. 5] taking away those 2/3 1/6 1/18. The result is 7 1/9.

[Col. XX]

{Lin. 1] Reckon with 7 1/9 four and one-half times.
{Lin. 2] The result is 32. Behold, this is its area.
(Lin. 3] You will find that it is correct.

[An interpretation of Problem 10 as concerned with the area of the
curved surface of a half-cylinder outlined by T. E. Peet, “A Problem
in Egyptian Geometry,” JEA, Vol. 17 (1931), pp. 104-06, and p.
105. Peet included the following translation, with the lines num-
bered consecutively rather than by each of the papyrus columns:'?]

1. Example of working out a semi-cylinder.

2. If they say to you, A semi-cylinder <of 4 1/2> in diameter
3. by 4 172 in height; pray
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4. let me know its area. You are to

S. take a ninth of 9, since a semi-cylinder

6. is half of a [cylinder]; result 1.

7. Take the remainder, namely 8.

8. You are to take a ninth of 8;

9. result 2/3 + 1/6 + 1/18. You are to take
10. the remainder of the 8 after (subtraction of)
11. the 2/3 + 1/6 + 1/18, result 7 1/9.

12. You are to take 7 19 4 1/2 times;
13. result 32. See, this is its area.
14, You will find it correct.

[Problem 11; see Fig. IV.6h,Cols. XXI-XXIIJ°
[Col. XXI]
(Lin. 1] Example of reckoning the work of a man in logs.
[Lin. 2] If someone says to you: “The work of a man in logs;
{Lin. 3] the amount of his work is 100 logs
[Lin. 4] of 5 handbreadths section; but he has brought them in logs
[Lin. 5] of 4 handbreadths section.” You are to square these §
handbreadths. The result is
[Lin. 6] 25. You are to square the 4 handbreadths. The result is 16.

[Col. XX1I]

{Lin. 1] Reckon with this 16 to get 25.

[Lin. 2] The result is 1+1/2+1/16 times. You are to take this num-
ber 100 times.

[Lin. 3] The result is 156 1/4 [corr. ex 1/2 1/16 in papyrust]. Then
you shall say to him, “Behold,

[Lin. 4] this is the number of logs which he brought of 4 hand-
breadths section.

{Lin. 5] You will find that it is correct.”

[Problem 12; see Fig. IV.6i, Cols. XXIII-XXIV]
[Col. XX111] [eont.]
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[Lin. 1] Example of the calculation of 13 hegat of Upper-
Egyptian grain.

[Lin. 2] If someone says to you: “[Take] 13 heqat (/it. 1 ten-heqat
and 3 heqat) of Upper-Egyptian grain to make [them]

[Lin. 3] into 18 1-des jugs of beer [like] malt-

[Lin. 4] date [beer),” See (i.e., note) that

[Lin. S] the amount of grain for 1-des of Upper-Egyptian beer
[like] malt-date beer is

[Lin. 6] 2 1/6. Reckon with 2 1/6 in order

(Lin. 7] to find 13, for note that 13 [as a simple number]

[Lin. 8] is the [same as] the 1 ten-heqat plus 3 heqat [given above
in parentheses].* The result is 6 times.

[Col. XX1V]

{Lin. 1] Reckon with 6 to find 18.

[Lin. 2] The result is 3 times. Behold, [this is] the pefsu,
[Lin. 3] [namely] 3. You will find [that] it is correct.”

[Problem 13; see Figs. IV.6i and IV.6j, Cols. XXIV-XXVI.J*’

[Col. XXIV]

(Lin. 4] Calculating 16 heqat of Upper-Egyptian grain,

[Lin. 5] reckoning it as 100 loaves of bread of pefsu 20, [leaving]
the rest

[Lin. 6] for beer of 2 pefsu,

{Lin. 7] of 4 pefsu,

(Lin. 8] and of 6 pefsu

[Col. XXV]

{Lin. 1] [like] 1/2, 1/4 malt-date beer.

(Lin. 2] Reckon the required amount of grain for the 100 loaves of
pefsu 20.

(Lin. 3] The result is 5. Calculate the remainder from the 16

{Lin. 4] after the 5 [have been subtracted]. The result is 11. Di-
vide

[Lin. 5] it up among each of the three different pefsus.

220



DOCUMENT IV.2: MMP

[Lin. 6] The result is 2/3 1/4. Take 2/3 1/4 two times

[Col. XXVI]

[Lin. 1] because it was said to him, “[it is like] 1/2 1/4 malt-date
beer.”

{Lin. 2] The result is 1 2/3 1/6. Calculate with this 1 2/3 1/6 to
[Lin. 3] find 11. The result is 12 (/, should be 6) times.

[Lin. 4] Say to him, “This is your beer. You will find that it is cor-
rect.”

[Problem 14; see Fig. IV.6j-IV. 6k, Cols. XXVII-XXIX]

[Col. XXVII}*

{Lin. 1] Example of calculating a truncated [square] pyramid.
{Lin. 2] If someone says to you: “A pyramid of 6 for the height
($pwtl)

[Lin. 3] by 4 on the base (i.e., the side of the lower square) by 2 on
the top (i.e., the side of the upper square).”

(Lin. 4] You are to square this 4; the result is 16.

[Lin. 5] You are to double 4 (i.e., multiply 4 by 2); the result is 8.
[Lin. 6] You are to square this 2; the result is 4.

[Col. XXVIII]

[Lin. 1] You are to add the 16

[Lin. 2] and the 8 and the 4;

fLin. 3] the result is 28. You are to take

[Lin. 4] 1/3 of 6; the result is 2. You are to take 28 two times; the
result is 56.

(Lin. 5] Behold, [the volume] is 56. You will find [that this is]
correct.

[Col. XXIX]
[For the diagram given in this column with translated numerals
and their computation, see Fig. IV.10.]

[Problem I5; see Fig. IV.6k, Col. XXXJ**
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{Lin. 1] The calculation of 10 hegat of Upper-Egyptian Grain.
(Lin. 2] If someone says to you: “10 heqat of Upper-Egyptian

Grain,

{Lin. 3] [they] are to be made into beer of pefsu 2.

{Lin. 4] Oh let me know [the amount of ]

[Lin. 5] the beer.” Reckon with this 10

{Lin. 6] two times. The result is 20. Behold,

(Lin. 7] the beer [quantity] is 20 1-des-jugs. You will find it right.

[Problem I6; see Fig. IV. 6L, Col. XXXI-XXXIIJ*®

[Col. XXX1)

[Lin. 1] Example of the calculation of des-jugs of beer of pefsu
2.

(Lin. 2] If someone says to you: “Des-jugs of beer of pefsu 2

{Lin. 3] (like] 1/2 1/4 malt-beer,

(Lin. 4] a quantity of three 1-des-jug [made from] 3 heqat with the
2 2/3 measure.” Calculate

{Lin. 5] the [grain] required for a 1-des-jug of this beer with the
pefsu of 2.

(Lin. 6] The result is 1/2 [heqat]. Take it 2 times.

(Lin. 7] The result is 1. Reckon with 2 2/3 to find 1.

[Col. XXXIT]

(Lin. 1] The result is 1/4 1/8. Calculate

(Lin. 2] 1/4 1/8 of 1/3. The result is 1/8 [of a heqat]. Do
(Lin. 3] say to him: “This is it.

(Lin. 4] You will find that it is correct.”

[Problem 17; see Fig. IV.6m, Cols. XXXIII-XXXIV]
[Col. X00X1I)7

{Lin. 1] Example of calculating a triangle.

(Lin. 2] If someone says to you: “A triangle of 20 [setjat] in its
area (3ht)

{Lin. 3] and what you put on the length, you must put 1/3 1/15
(i.e., 2/5) thereof on its breadth.”
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{Lin. 4] Double the 20 [setjat]; the result is 40.

[Lin. 5] Reckon with 1/3 1/5 so as to find 1. The result is 2 1/2
times.

[Lin. 6] Reckon with 40 2 1/2 times. The result is 100. You are to
take its square root.

[Col. XXXIV]
[Lin. 1] The result is 10. Behold it is 10 [khet] in length. You are

to take 1/3 1/15.

[Lin. 2] of 10. The result is 4. Behold, it is 4 [khet] on the breadth.
You will find [it to be] correct.

[The remainder of Col. XXXIV is the diagram of the triangle and
its measurements, plus the calculations already specified. In addi-
tion to the figure as presented in Fig. IV.6m, see also Fig. IV.11
presented with the numerical data translated.]

[Probiem 18; see Fig. IV.6n, Col. XXXV]

[The rendition given by Struve is, as Peet points out,”® an unsatis-
factory reconstruction, but I give it here in part (with substantial
changes in the last two lines) for want of a more satisfactory ver-
sion.]

(Lin. 1] Example of the calculation of a strip of garment-cloth 5
cubits [plus] 5 palms® [long by] 2 palms [wide], the area of which
is to be reckoned.

[Lin. 2] If someone says to you, “A strip of garment-cloth 5 cubits
S palms by 2 palms, the area of which is to be reckoned,

{Lin. 3] Oh let me know its area.” Convert

[Lin. 4] this strip of 5 cubits 5 palms [by] 2 palms into palms
[where 1 cubit = 7 palms). The result is 35 [palms in length ] for
this 5 cubits

[Lin. 5] [while] the result for [the area of the end piece of] this
strip is 10 (i.e., 5 x 2). [Then you] multiply 35 times [2, the width],
and add [this 70 to the area] 10 [found for the end piece], the
[resulting total area of the cloth strip is] 80 [square palms).
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[Problem 19; see Fig. 1V.6n, Col. XXXVI]*°

[Lin. 1] Example of calculating a quantity taken 1 and 1/2 times
and added to

{Lin. 2] 4 to make 10. What is the quantity which says this (i.e.,
that produces this equality)?

{Lin. 3] Calculate the excess of this 10 over 4. The result is 6.
[Lin. 4] You operate on 1 1/2 to find 1. The result is 2/3. You
[Lin. 5] take 2/3 of this 6. The result is 4. Behold, 4

[Lin. 6] says it (i.e., satisfies the equality given above). You will
find [that this is] correct.

[Problem 20; see Fig. IV.60, Col. XXXVII]

{Lin. 1] Example of the calculation of 1000 loaves of bread of
pefsu 20,

[Lin. 2] If someone says to you: “1000 loaves of bread of pefsu 20,
like that which has come from and is filled with emmer [alone];
{Lin. 3] Make known to me the emmer.” Reckon with 20 to find 2
2/3,

[Lin. 4] The result is 1/5 of 2/3. Take 1/5 of 2/3 of this 1000. The
result is 133 1/3,

[Lin. 5] [If] you calculate it in Upper-Egyptian grain, the result is
133 1/4+ 1/16 + 1/64 heqat 1 2/3 ro.*!

[Problem 21; see Fig. IV.6p, Cols. XXXVII-XXXIX]*

[Col. X00XVIH)

[Lin. 1] Example of calculating the mixing (£bn = $bn) of offering-
bread.

[Lin. 2] If someone says to you: “20 measured (?) [as Horus-eye

fraction] ~ (i.e., 1/8 heqat of grain) and 40 measured (?) as

[Horus-eye fraction] > (i.e., 1/16 heqat of grain).”
(Lin. 3] You are to take 1/8 of 20; because the [Horus-eye sign]

“Tis 1/8.
[Lin. 4] The result is 2 1/2. You are to take 1/16 of 40 because
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[Lin. 5] [the Horus-eye sign] > is 1/16. The result is 2 1/2. You
are to calculate

(Lin. 6] the total of these [fractions of 20 and 40]. The result is 5.
You are to calculate the total

[Col. XXXIX]

[Lin. 1] of these [initial numbers 20 and 40]. The result is 60.
Then you divide 5 by 60, and

[Lin. 2] the result is 1/12 (corr. ex 1/16). Behold, the mixture is
1/12 (corr. ex 1/16). You will find [that it is] correct.

[Problem 22; see Fig. IV.6q, Cols. XL-XLI]
[Col. XL]

{Lin. 1] Example of calculating with 10 heqat of Upper-Egyptian
grain.

[Lin. 2] If someone says to you: “10 heqat of Upper-Egyptian
grain

[Lin. 3] are to be calculated like 100 loaves of bread whose pefsu
is not known.

[Lin. 4) and the remainder is for 10 [des-jugs of] beer with pefsu 2,
like 1/2 1/4 malt-date [beer].”

{Lin. 5] Behold, 1/2 1/4 malt-date beer.

(Lin. 6] Behold it is 2 des-jugs [of beer prepared from grain]. You
will calculate the portion of the 10 des-jugs of beer with [pefsu] 2.

[Lin. 7] The result is [S heqat]. [You will] calculate the remainder
of this 10 [des-jugs of beer] in accordance with this [5 heqat] of
Upper-Egyptian grain.

[Col. XLI)

[Lin. 1] The result is 5. You will calculate [as] with 1/2 1/4 malt-
date [beer] in order to find 1.

(Lin. 2] Behold, [as] with 1/2 1/4 malt-date [beer you will get] 2
[jugs for 1 of stronger beer?]. The result is [that you need] 1/2 [the
grain needed for the first portion of producing stronger beer]. [So]
you will take 1/2 of 5.
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[Lin. 3] The result is 2 //2 [heqat}).*’

[Problem 23; see Fig. 1V.6r, Col. XLIl and particularly the cor-
rections and interpretation suggested by Peet in his review (pp.
158-59) ¢

(Lin. 1] Example of reckoning the work of a shoemaker.

(Lin. 2] If someone says to you: “[Regarding] the work of a shoe-
maker, if he is cutting out [only], [he can do] 10

{Lin. 3] [pairs of sandals] per day; [but] if he is decorating, [he can
do] 5 per day.

[Lin. 4] As for [the number] he can both cut and decorate in a day,
{Lin. 5] what will that be?" You will calculate [the sum of] the
[day-]equivalencies (rmn‘wy or rmnwy) of the 10 and the § (i.e.,
add the 1 day for cutting out the 10 pairs of sandals and the 2 days
for decorating them).

{Lin. 6] The result for them together is 3 [days]. Take this to find
10. The result is 3 1/3 times. Behold it is 3 1/3 [pairs of sandals]
per day [to be fully cut and decorated).

[Problem 24; see Fig. 1V.6s, Cols. XLIII-XLIV}

[Col. XLIII]

{Lin. 1] Example of calculating with 15 heqat of Upper-Egyptian
grain.

(Lin. 2] If someone says to you, “[There are] 15 heqat of Upper-
Egyptian grain to be made into 200 loaves of bread.

{Lin. 3] The remainder [is to be made into] 10 des-jugs of beer of
pefsu 1/10 that of the bread, the pefsu of the beer being [like]

{(Lin. 4] 1/2 1/4 malt-date beer.” Reckon with 1/10 to find 1.

{Lin, 5] The result is 10 times. Reckon with the 10 des-jugs of
beer

(Lin. 6] 10 times. The result is 100. Add the 100 to the 200,

{Lin. 7] The result is 300. Reckon with 15 to find 300. The result
is 20 times.

[Col. XLIV]
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(Lin. 1] Behold, [this] 20 is the pefsu of the 100 (/, should be 200)
loaves of bread.

[Lin. 2] Take 1/10 of the 20. The result is 2.

{Lin. 3] Behold what belongs to the |10 des-jugs of beer; see, it is
the pefsu 2

[Lin. 4] You will find [it to be] correct.

[Problem 25; see Fig. IV.61, Col. XLV]

{Lin. 1] Example of calculating a quantity such that if it is taken
two times along with [the quantity itself], it (i.e., the sum) comes to
9.

(Lin. 2] What is the quantity that says it (i.e., satisfies the state-
ment).*® Reckon the sum of this quantity [taken as 1] and the 2.

{Lin. 3] The result is 3. Reckon with 3 to find 9. The result is 3
times.

[Lin. 4] Behold 3 says it (i.e., satisfies the statement). You will
find [that it is] correct.

Notes to Document IV.2

! As 1 have said before, Struve’s reconstruction is completely speculative. The
reader will see that this is so if he examines Fig. IV.6a, Problem 1. The brack-
cted words in the first line come from the fact that apparently the verb pri also
appeared in the second line and it is conventional in this text to repeat the title
line in stating the problem in the second line. We can give some credence to
Struve's belief that this is an aha-problem similar to Problem 28 in the Rhind
Papyrus where pri is used to mean “take away” or “subtract” (se¢ my Fig.
IV.2z). He sees in a fragment the “20” which appears to be the remainder
when 1/5 of the unknown quantity is “subtracted™ from the unknown quantity.
Apparently in the third line the author said something like “operate on 1/5 to
get 1” since the fragment of the third line seems to tell ns that the result is S.
Subtracting 1 from § we get 4, i.c., 4/5 of 1. But the remainder in fact was 20,
so that we must find what multiplier makes 4/5 into 20. The answer is 25;
hence 25 is the desired “aha,” i.c., unknown quantity. Thus, as in the Rhind
Papyrus, we perhaps have here an arithmetic problem solved like an algebraic
solution of a linear equation by means of the initial assumption of the “aha™ as
“1,” i.e., by false position.
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21t is not clear what is being calculated in this probiem because of the fragmen-
tary nature of the text. It probably has something to do with the relationship of
rudder length to the ship's length or size.

3 See Peet’s review in JEA, Vol. 17 (1931), p. 154: “P. 42, n. 2 {cf. my Fig.

1V.6a). The reading in ii, 3 can hardly be right. The first sign is surely
, and, though the second with its small head, and its lower stroke almost at

the level of the top of the 4, is not a convincing -2, I am inclined to think that
is what it is.”

*1 have followed Struve's reconstruction (op. cit., p. 43) for the most part. If
this is a correct reconstruction, then we have a very simple problem involving
fractional multiplication. But Peet in his review, ibid., p. 154, has a different
reading of some of the signs that casts doubt on Struve’s reconstruction: “P. 43,
no. 3. The interpretation and restoration given [by Struve] are unsatisfactory
because ju-p3w n °f cannot mean ‘a mast (made) out of a cedar’ but only a
‘cedar mast," and because line 3 as restored could not possibly convey the
meaning required of it, namely that the mast should be 1/3 + 1/5 of the height
of the cedar. The readings here given are not all correct. In the first place S,
has failed to notice that the small square projection of papyrus at the bottom of
the left-hand piece (Fragment 2) has been wrongly mounted. It should be
swung round through a right angle to the left on its lefti-hand top comer. It

then completcs the n of pn in 1. 3 and the word 2L &X' ' ' fspr (apparently

so) in line 4. The signs under the p are, in the tattered state of the papyrus, not

certain; ~ is impossible. n L 3 after the traces of 3w 1/3 S. reads (p. 43,
fig.2) the fraction 1/5. No fraction stood here; what remains might be a trace of

=, andtlhem may be room for a horizontal sigbelow it. The sign which

precedes ~ in 1. 3 might, as S. thinks, be 1/3 (BN is not possible), but in this
case what is the dot to the left of its top, and why a stroke afier it? The sign

transcribed ébys.disappearswhentlnloouﬁagmemiscomﬂyplaced

“I have no constructive criticism to make on this problem. It is possi-
ble that it dealt with the volume of a mast 30 cubits long and so many hand-
breadths in diameter of section.”
% As Struve (op. cit., p. 146) notes, this problem is equivalent to Problem 51 in
the Rhind Papyrus, and so see my discussion of that problem in Chapter Four in
the section on areas and also in Document IV. 1, note 68. Because of its simi-
larity to Problem 51 of Document IV.1, I have suggested additions to the in-
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complete lines 4-6 in the Moscow Papyrus. Note in Col. V (lines | and 2 of my
Fig. 1V.6b) the incomplete figure of a triangle (cither an isosceles or a right
triangle) with the lengths of the mryt (10) and base (4), plus the total area (20,
written as two strokes). Under the figure are the following calculations in lines
3 and 4:

1 4 1 {10]

12 2 V2 (20).
Compare the calculations of Problem 51 in Document IV.1. 1 have already
discussed in connection with that problem (n. 68) Gunn and Peet’s view of the
mrytastl\eperpendxcularhelgmorkmheteofamangla
® Pect argues, op. cit., p. 157 that the word here and in other bread to beer

?mblemsshouldbe (db3) and not L (pr), i.c., “exhange™ not “provide.”
This is apparently a shortened form of the so-called “1/2 1/4 malt-date beer”
given below in line 4 of Col. X in Problem 8, which, except for this use of the
fuller form of the name of the weak beer, is identical with Problem 5.

For a bricf discussion of pefsu, see Chapter IV, under the rubric “Pefsu
Problems,” and endnotes 103-04 of Document IV.1, where it is mentioned that
the pefsu (cooking ratio, i.c., the ratio of the quantity of bread or beer to the
quantity of meal used in the cooking) of bread or beer indicates inversely the
strength of the bread or beer after it has been cooked or brewed.

Note also that there is a long discussion of pefsu problems in Struve’s
edition, pp. 44-101. Struve always uscs the spelling pesu, as does Gillings. In
my translatious 1 have always used pefsu for the sake of consistency. Struve’s
treatment of the kind of weak beer mentioned in this and other problems in the
Moscow Papyrus and his attempt to untangle the role that the name of the weak
beer (i.c, 1/2 1/4 malt-date beer) plays in the calculation of this and other
problems scem puzzling to me. Rather, it appears to me that the fractions that
are a part of the name of the beer do not play the role that Struve assigns to
them in the calculations of Problems 5 and 8; but rather, as the pefsu of 4 of the
beer in this problem suggests, the name of the weak beer only serves to indicate
that this is a weaker beer like that of beer made from a mixture of malt and
dates whose components are somehow represented by the fractions 1/2 and 1/4.
The usual pefsu of stronger beer is 2. Hence the beer of pefsu 4 needs only half
the quantity of that of pefsu 2; hence the conclusion in Column VI, line 7, that
the “result is 1/2.” Therefore, in determining the jugs of beer here, the author
takes 1/2 the heqgat measure of meal that produced the 100 loaves of bread with
pefsu 20 in order to produce 10 jugs of beer of pefsu 4.

1 prefer the discussion of this problem given by Peet in his review, pp.
155-56, but it too seems inconclusive to me. It does not surprise me that Gil-
lings in his general work on Egyptian mathematics made no real effort to un-
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tangie the pefsn problems of the Moscow Papyrus (see below in the discussion
of Problem 21 of the Moscow Papyrus). Other efforts to delincate and clarify
the eight problems in which there are references to “1/2 1/4 malt-date beer”
(and which are also not convincing to me) were later given by A.H. Gardiner,
Ancient Egyptian Onomastica, Vol. 2 (Oxford, 1947), pp. 225-27, and by C.F.
Nims, “The Bread and Beer Problems in the Moscow Mathematical Papyrus,”
JEA, Vol. 44 (1958), pp. 56-65. From the latter (p. 63) 1 have adopted onc
conclusion, namely, that the references to bs3 (“grain™) found in the beer prob-
lems were not to “spelt,” as Struve wished, but rather to “malt,” i.c., “sprouted
n"

Compare the translation, transcription, and discussion of Problem 6 by Gunn
and Peet, op. cit., pp. 168-71 and Plate XXXV.

¥ See the discussion of this word in Gunn and Peet, ibid., pp. 170-71. They feel
that this is the square khet or aroura, as it is often translated, which appears in
the Rhind Papyrus and elsewhere but in a different form than that found in the
Moscow Papyrus. If indeed the setjat is meant here, then obviously the length
and breadth of the rectangle in this problem are 4 khet and 3 khet.

1 As Gunn and Peet note (op. cit., p. 170, n. 1): “The word for ‘square root’ is

written, here as elsewhere, withthesignr. which represents either a ‘corner’
or more probably a ‘right angle.” The underlying idea is perhaps that a right-
angle with equal arms, say of 3 in length, ..., is the root of, in the sense of giv-
ing the data for, a square of [area) 9.”

" See Chapter Four, the section on geometry. Of course, in modern terms, the
solution is essentially the finding of the two unknowns (length and breadth of a
rectangle) when two simaultaneous equations are given: [1] 12 = length x
breadth and (2] breadth = 3/4 of length. The value of the breadth in terms of
the length which is given in equation [2] is substituted in equation (1], result-
ing in length® = 16 and length = 4. Then this value of length is substituted in
equation {2], resulting in breadth = 3. Finally these numerical values of length
= 4 and breadth = 3 are proved to be correct by multiplying them together to
yicld 12, the given area.

' Again see Chapter Four, section on geometry. Also note that Gunn and Peet,
op. cit., pp. 171-74, and Plate XXXV, give a translation, a hieroglyphic tran-
scription, and discussion of Problem 7. Again we see some differences in the
ways that Gunn and Pect and Struve treat the problem. See also Document
IV.1, note 68, for a discussion of the various views of the Egyptian determina-
tions of the areas of triangles.

13 Gunn and Peet, op. cit., p. 172, remark: “Lines | and 2. The determinative
of $pdt, ‘triangle,’ here, as in Problem No. 17 and the damaged Problem No. 4,
has a shape quite different from that of the sign with which the same word is
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written in the Rhind Papyrus. In the latter the sign is the symmetrical upright
point (thorn?), with apex at top, with which all forms and derivatives of $pd
(primarily meaning ‘to be sharp’) are normally written in hieroglyphic and
hicratic. In the Moscow Papyrus, on the other hand, it is a different sign, a
scalene triangle, with vertical ‘base’ and the apex high up on the right. Thus
the word $pdt, “the pointed,’ in its special meaning of ‘triangle’ here receives a
new determinative, a triangle.” I again remind the reader of the discussion by
these authors (ibid., pp. 173-74) of their belief that the Egyptians had the
proper formula for the area of a (riangle (a correct belief, I think; see the sec-
tion on geometry in Chapter Four and also note 14 below). The discussion
makes some interesting philological points concemning mryt and idb, which
they believe mean respectively “length and ratio of length to breadth™ (to be
interpreted in triangular areas as “height” and “base”™).

' This problem is here solved by the use of false position and the concept of
proportion (sec the section on geometry in Chapter Four). Of course, as in the
preceding problem, the solution in modern terms is essentially onc of finding
two unknowns (the height and base of a triangle) with two simultaneous equa-
tions: {1] 20 = (1/2) height x base, and [2] height = 2 1/2 times the base. If
there ever was any doubt that the ancient Egyptians knew the correct formula
for a triangle, this problem should dispense with it. Notice that when the area
is given, the first step in the solution in the finding of the height and the base is
to double the given area of the triangle! From that point on it is clear that we
are finding the sides of a rectangle that are equivalent to the height and base of
the triangle! See my discussion of a scalene triangle with these measurements
in the section on geometry in Chapter Four.

' This is a duplicate of Problem $, except that the name of the weak beer is
given in full here as “1/2 1/4 malt-date beer,” while there it is abbreviated as
“1/2 1/4 beer.” See note 7 to Problem 5.

16 See note 6 above.

17 As in Problem 5, which concerns an exchange of bread for beer while this
problem poses the use of Upper Egyptian grain to produce 100 loaves of bread
and six 1-des-jugs of three beers of varying strength, i.c., with pefsu respec-
tively of 2, 4, and 6, | have diverged from the attempt of Struve to clarify the
problem; hence my translation differs from his. 1 found the comments of Peet
in his review of Struve’s text and translation (pp. 156-57) heipful but not de-
1® As I have said in the body of Chapter Four (section “Volumes™), if Struve is
correct in his view that the author is showing how to calculate the surface area
of a hemisphere, this is a remarkable step in the development of geometry, a
step ordinarily attributed to the Greeks (especially to Archimedes). It would
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mean that like the Greeks, the Egyptians began to see the importance of calcu-
lating the curved surfaces of solids like the sphere in terms of a rectangular or
rectiplanar surfaces. There are however some serious philological questions
raised by Peet in his article *A Problem in Egyptian Geometry,” JEA, Vol. 17
(1931), pp. 100-06. Sec especially pp. 101-03:

“Unfortunately there are against Struve's translation a number of very
grave objections. The critical words are those which describe the nbt or
‘basket’:

nbtmip-rr412m 4
These words he translates ‘cinen Korb mit einer MOndung zu 4 1/2 in Erhal-
tung,’ ‘a basket with a mouth of 4 1/2 in preservation.” That tp-r...means
‘mouth’ seems very probable. “d Struve takes as the infinitive of the verb ‘to
be sound’ or ‘unharmed,” and thinks it indicates that the mouth, ¢p-r, is un-
damaged or complete, i.c., that it is, in technical language, not a small circle of
a sphere but a great circle, and that consequently the bt is a hemisphere and
not a smaller segment of a sphere. To this there are fatal objections. The
words m “d cannot possibly refer to {p-r, from which they are separated by » 4
1/2; in any case m with the infinitive cannot be attached adjectivatly to a noun.
Moreover, the expression nbt m tp-r *a basket with a mouth...” is very doubtful
Egyptian; the examples quoted by Struve from Pap. Anastasi I, 14, 3 and Pap.
Harris I, 59, 2 are not parallel to this, for in both cases the dimension is fol-
lowed by a genitive giving the figure, which is missing here. But the real rock
on which Struve's rendering breaks up is the preposition » before the numeral 4
172. r is never used in the mathematical papyri to introduce a dimension when
only onec dimension is given; it is, however, used to introduce the second of two
dimensions when two are given, and it then answers exactly to our ‘by’ in ‘6
fect by 3." And this gives us the clue to the cotrect interpretation of the pas-
sage. The fignre 4 1/2, preceded as it is by », must be the second of two di-
mensions, Where then is the first? 1t must be contained in the 9 which so un-
expectedly turns up without explanation in line 5, where its sudden appearance
is so disconcerting to Struve. But why was this not mentioned in its proper
place in the setting out of the problem? The answer is that in the archetype it
was, but that our scribe has omitted it. I am convinced that no one who is con-
versant with the phraseology of the mathematical papyri and with the Middle
Egyptian uses of the prepositions will question the necessity of inserting the
word o followed by a numeral between nb¢ and m in line 2, thus restoring the
reading
nbtutx>miprr412md
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*a basket (7) of x in mouth and 4 1/2 in %’ where “d, whatever it may mean, is
the name of the second dimension given, just as fp-r is of the first. The work-
ing now becomes intelligible. Two dimensions are given; the first is operated
on in lines 5fI., and the second, the 4 1/2, is only brought in near the end as a
multiplier.....

“Once the grammatical necessity for restoring these two words is per-
ceived Struve’s interpretation of the problem as the determination of the curved
area of a hemisphere of diameter 4 1/2 falls under the gravest suspicion, for a
hemisphere is fully determined by a single dimension, its radius or diameter,
while here we have two, a ¢p-r and a .

“To this it may be replied that Struve has produced strong etymologi-
a!levidencemshowlhatthenbéisineﬂ'ectahenﬁspm This evidence we
must now examine, The word & |, the reading of which as nbt seems certain,
is doubtless in origin the well-known word for a “basket,’ as Struve has pointed
out, and our first instinct is naturally to see in it the technical term for a hemi-
sphere, or at any rate a scgment of a sphere, which its shape suggests. Struve,
who translates it as hemisphere, finds confirmation of this in line 6, where he
thinks that the nb¢ was stated to be half an inr, ‘egg,’” which he holds to be the
technical term for a sphere.”

Pect goes on to refute that view, and concludes that inr cannot be used
alone for an “egg™ or an “egg-shell” and hence “I do not accept the reading inr,
and with this reading falls the etymological argument for Struve's interpreta-
tion of the problem.” Examination of the hicratic text makes me hesitant to
acoept the last argument concerning {nr. There is no doubt in my mind that the
word which Struve read as inr has at its end the egg glyph, and one should not
dismiss the example of its use of inr as an “egg-shell” in a hymn cited by
Struve simply because it was a figurative use, since figurative uses often be-
come conventional usage. The reading of the word itself is too fragmented to
sustain the doubts raised by Peet. Though Gillings in his treatment of Problem
10 (op. cit, pp. 198-201) docs not answer Peet’s philological dismissal of
Struve's interpretation, he was inclined to acoept Struve's interpretation of the
problem as the finding of the curved surface of a hemisphere. He does so be~
cause a step-by-step consideration of the arithmetical procedure when general-
ized seems to produce the modern form of the formula for the curved surface of
a hemisphere. Numbering the lines consecutively rather than by column, on
page 199 he correlates the steps with the modern procedue:

“(Line 5). Double 4 1/2. Double the diameter =2d.

(Lines 6,7). Find 8/9 of this. 89x2d=2x89xd.

(Lines 8,9,10,11). Find 8/9 of this. 2 x 89 x 89 x d.
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(Line 13). Multiply by d. 2 x 64/81 x d” = 2 x 64/81 x (2r)?, or
A =2x25681 74
A = 217, where & = 256/81.
This is indeed the modern formula for the curved surface of a hemisphere. If
this interpretation of MMP 10 is the correct one, then the scribe who derived
the formula anticipated Archimedes by 1500 years!”

Even if this is the correct interpretation, there is in this numerically
presented formula (as in all the arithmetically expressed geometrical formulas
given by Egyptians) no formal derivation and proof of the formula implied by
the arithmetical steps. As Gillings suggests (p. 200-01), the procedure could
have been derived empirically by the basket weaver who found that “when one
is weaving baskets which are roughly hemispherical one requires a quantity of
material for the circular plane lid that is almost half that required for the basket
itself. Since the calculation of the area of a circle was a commonplace opera-
tion to the scribes (Problem 50 of the RMP [my Document V. 1)), over a period
of years it could have come to be equally commonplace that the curved area of
the hemispherical basket was double that of the circular lid.” But though I tend
to agree with Struve and Gillings, I must remind the reader that the proponents
of this interpretation of Problem 10 must still meet some of the philological
difficulties raised by Peet, as I have partially done earlier in this note.

1% This is one of two alternate interpretations posited by Peet. I have not taken
seriously his reconstruction of the problem as determining the area of a semi-
circle, since a semicircle as a flat surface can hardly be considered as a “basket”
and the problem, whatever its exact intention, certainly seems to concern the
area of some kind of basket. 1 am not persuaded by the remaining interpreta-
tion given next. It seems to me there are even more gratuitous assumptions in it
than there are in Struve's, and Peet himself points out some of the difficulties.
Perhaps the most cautious conclusion is that, in view of the state of the text, we
cannot be sure of the correct interpretation.

2 peet in his review of Struve’s edition (p. 158) makes a number of crucial
emendations of Struve's transcriptions in this problem: “P. 101, no. 11. S. has
gone hopelessly wrong here through an incorrect transcription. The numeral
lOOoccurstlueetimesinthepmblem‘a‘mlihehason%oeeasionﬁiledto

recognize it in xxi, 3 he has read it as %, in xxii, 2 8s *—, and in xxii, 3 as
<, Funlwralwaﬁonsmbemadeins.'smdinémasfollows: Rmo:ll o
Vi) P <>

for""passln‘g;lgxualod. 46 rudrﬁna‘nld i for (i and 111 respectively. In
|

xxii, 3 for & O 1™ read 0 (™. The real difficulty lics in the word

with which xxi, 4 and 5 begin, and which occurs again in xxii, 4. For the first
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sign, = is palacographically just possible, though a comparison with the other
instances in this papyrus shows that this would be an extreme form, and in
view of the very different form given to = in writing phdt, where, as bere, it
stands alone, the reading &B,B,isprefmble. This is confirmed by the

writing with phonetic complement - in xxii, 4. In the ligature which follows
tlfetopsignmigmberort(di\{moalybemrnmde)mdtlwlmr. torn

The determinative looks like | | 1.” Following these remarks, Pect gives the
translation which I have followed closely in meaning, though maintaining some
of the phraseology | have adopted in translating the previous problems.

21 am following the tenor of the remarks made by Peet in his review (op. cit.,
p. 157). Needless to say, the pefsu is, as | have said before, a ratio of quantitics
and thus a simple number. Note that the remainder of the calculation to find
the pefsa is given in numbers alone without specification of des-jugs and/or

heqat.

2 As Struve shows in his edition (p. 92), the calculation given by the author is
similar to solving the linear equation x = 18: (13: 13/6) in two steps: (13: 13/6)
=6and 18:6 =3 = x.

B This is a duplicate of Problem 9, except that it is considerably truncated. No-
tice also the scribal error in Col. X3(VI, line 3, where “12” is given instead of
g

3 See Chapter Four under the rubric “Volumes™ for an extended discussion of
this correct formulation of the procedure for finding the volume of a truncated
square pyramid, which is usually judged to be the most important volumetric
discovery made by the ancient Egyptian mathematicians.

B For some philological comments by Peet, see his review, p. 156.

% Ppeet in his review (op. cit, p. 157) criticizes 8 number of the readings and
reconstructions of Struve. But he seems at a loss to offer any satisfactory
translation of the whole problem. Hence | have stayed with Struve’s text.

21 have kept a close eye on Gunn and Peet, op. cit, pp. 174-75 and plates
XXXV and XXXVI. Also see the corrected readings in Peet's review, op. cit.,
p. 160. Note that the drawing in the papyrus is of a triangle that is almost a
right-triangle and probably was meant to be that, as Struve redraws it in Fig.
IV.6m, Col. XXXIV. I have already discussed in Chapter Four, the sections on
areas, and in Document V.1, note 68, the question of whether the general for-
mula for the triangle was known by the Egyptians and | have cxpressed my
opinion that it was. The area is specified as “two thousands of land,” which is
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20 setjat. I have simply used setjat for square khets throughout. Peet uses
“arurae.” It is also ofien written “arouras.”

2 For Peet’s highly critical remarks concerning Struve's reading of the text of
this problem and his translation of it, see his review of Struve’s text (op. cit.,
pp. 159-60). In the last sentence of these remarks, Peet figuratively throws up
his hands and says: “All this seems hapeless.”

® For the measured lengths of cubits and palms, see my Volume One, p. 109
and the first sections of Chapter Four above. It will be obvious to the reader
that the problem, as interpreted here, is simply a standard rectangular area
problem after the length, given as a mixed number of cubits and palms (or
handbreadths, following Peet’s rendering), is converted entirely into palms,
while the breadth remains in palms. The resulting area, then, is in squared

ms.

See the brief but useful corrections in Peet’s review (p. 159). It will be evi-

dent to the reader that the arithmetic solution to Problem 19 is equivalent to the
solution of a simple linear equation (1 12)x+ 4=
% Note that in linc 5 the calculation is made in heqat with Horus fractious
(which, as in Document 1V. 1, I have given in ltalic type) plus a further fraction
expressed in ro.
32 While Peet in his review (pp. 157-38) believes that Struve's “interpretation of
the nature of the problem is certainly right,” he offers some corrections, which I
have adopted in my translation. I have quoted Peet's later rendering of this
problem in Chapter 1V under the rubric “Pefsu Problems.” Notice that the final
answer, namely 1/12, is in fact the harmonic mean between 1/8 and 1/16. Gil-
lings, op. cit., p. 132, has an interesting comment on this fact: “In line 7 (=Col.
XXXIX, line 2 of Struve’s text) the scribe divided 5 by 60, where we would
have expected 60 divided by 5 giving the pesu of the sacrificial bread as 12. If
one hekat of grain produced 12 loaves of bread then each of these loaves would
have a pesu of 12, But the scribe has expressed this differently by saying that
each loaf contained onc twelfth of a hekat of grain, which is correct. This
method of expressing pesu appears to be consistent with line 2 [of Col.
XXXVIII) where the fractions 1/8 and 1/16 are written for what we would call
pesus 8 and 16, If then following the scribe’s thoughts we think of fractions
only, we come quite naturally to the observation that the answer 1/12 is the
harmonic mean of the two fractious 1/8 and 1/16, being equal to twice their
product divided by their sum.” (Note that Gillings’ system of writing unit frac-
tions by inserting macrons over the denominators has been changed in my
%m(auontomyeonvenuonalsyslmofwnﬁngtheﬁamom)

Again see that the one-half hegat is written in the Horus-eye fractional sys-
tem, i.c., with its special sign for 1/2. Hence I have written it in Italics, as al-
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ways. For stronger and weaker beers, see my version of Problem 5 above with
note 7.

*The reconstruction of this problem by S. Couchoud, Mathématiques égyp-
tiennes (Paris, 1993), pp. 171-74, also depends on Peet’s suggestions for the
most part. She makes a further clever correction in the translation in line § of
rmnwy (Le., r mn “wy?)...10 as “up to these 10 pairs.” She quotes #5, Vol. 1,
p. 158/12. 1 have adopted the translation “equivalencies™ (see R.O. Faulkner, A
Concise Dictionary of Middle Egyptian [Oxford, 1962}, p. 149) because of the
somewhat awkward word order and the rather meaningless expression “up to”
for r mn involved in accepting Couchoud’s suggestion. This is avoided by
translating the term as “[day-] equivalencies™ or “equals” or “matchings,”
meaning, of course, the two different day-amounts necessary for, on the onc
hand, the cutting and, on the other, the decorating of the ten pairs of sandals.
311 is evident from the details of this problem that 10 of the 15 heqat were used
to make the 200 loaves of bread of pefsu 20, and that 5 hegat were used to pro-
duce the 10 des-jugs of beer of pefsu 2. This, like all of the pefsu problems,
involves the use of the basic cooking ratio of the number of loaves of bread or
jugs of beer to the quantity of flour or grain.

¥ For corrections in the first phrase of line two, see Peet's review (p. 159),
where he says “the original reading was doubtless in m p? h¢,” and then gives
the translation [ have included here. The problem expressed in algebraic form
is 2x + x=9, and x is, of course, 3, as the author determines.
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DOCUMENT IV.3

The Kahun Mathematical Fragments: Introduction

Among the finds that resulted from Flinders Petrie’s exca-
vations at the workers’ town (designated as Kahun by Petrie) near
the pyramid of Sesostris II at Illahun in 1889-90 were a number of
hieratic texts and fragments. These were published in 1899 in two
volumes (Vol. 1, Text and Vol. 2, Plates) by F. LI, Griffith, whose
articles on the Rhind Papyrus I have already mentioned. The title
was The Petrie Papyri: Hieratic Papyri from Kahun and Gurob, 2
vols. (London, 1898).

Among the fragments were six devoted to mathematical prob-
lems. So far as he was able, Griffith translated and discussed them
(for the hieratic texts and hieroglyphic transcriptions, see Fig.
IV.12, which reproduces Plate VIII of Griffith’s work) and my
English translations have been made from his text and, in part, are
based on his suggested translations. The fragments seem to date
from the second half of the twelfth dynasty, and so are roughly
contemporary with the first two documents that I have presented.

In the preface to the text-volume Griffith gives us some of
the details of when and how he developed his work (pp. v-vi):

The restorations of the papyri were mostly completed in
1890. It was at first intended to publish hand copies...[but it
was later] agreed that the facsimile plates should be made by
the excellent photographic process of the Autotype Com-
pany. These facsimiles were all executed in 1893.... At
length, in March, 1897, Part I., containing Plates I. to VIII
[and hence the mathematical fragments], and the text per-
taining to them, was issued to subscribers.... The subscrip-
tion copies were accompanied by a request to scholars for
corrections and observations, and these the editor has now
the pleasure of acknowledging in the section of Additional
Notes [the notes for Plate VIII. by Professor Maspero and
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others are included on p. 101)...and in the Zeitschrift fiir
Aegyptische Sprache, 1898, Borchardt has contributed to
the solution of a mathematical problem.

I have included this group of the so-called Kahun-Papyri
fragments, despite their apparent lack of anything substantially dif-
ferent from the problems and techniques of the first two documents,
because they do give one more small indication of the popularity of
some of the tables and problems we have already presented.

The first item from these fragments contains a fifth of the
Table of Two, which appeared in more complete form in Document
IV.1 (the Rhind Papyrus). The initial item is from the fragment Ka-
hun, IV.2, lines 1-10, and gives the divisions of 2 by the first ten
odd numbers, i.e., those from 3 through 21. The answers are ex-
pressed in the same unit fractions as those given in the complete
table of the Rhind Papyrus, though they are much more simply pre-
sented as 10 lines of numbers with no check marks and no rubrica-
tion.

The second fragment is from Kahun IV. 3. (vertical lines or
columns 11-12) and contains numbers in arithmetical progression.
It involves the following problem: “When the sum of 10 terms in
arithmetical progression is given and the common difference of
those terms is also given, what is the series” This resembles
Problem 40 of the Rhind Papyrus.

The next item is also from Kahun, IV. 3. (columns 13-14).
It concerns the volume of a cylindrical granary, and thus is a type of
problem found in Document IV.] (see Problem 41-43). It is impor-
tant because it gives the procedure of finding the volume of the
cylinder in khar directly and thus allows us to correct the similar
Problem 43 in Document IV. 1.

The fourth item is from Kahun, XLV. 1. (lines 15-22). It
contains a group of large numbers, the context being unspecified.
Griffith’s comment concerning these numbers (gp. cit,, p. 16) still
seems just:
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These fragments (verso blank) are useful as showing the
hieratic forms of the highest numerals. I do not see what
the very large quantities mentioned are likely to refer to:
they diminish rapidly in succeeding lines, but apparently not
in any fixed proportion. Yet it seems probable that they
formed part of a considerable mathematical calculation, and
not of mere accounts.

The next problem I have included for Document IV.3 is
from Kahun, LV. 3. (lines 23-28). It is simply an aha-problem, i.e.,
one whose specified conditions and the solution resemble those of a
linear equation whose unknown quantity is to be found. As we
have seen, this is also a type of problem found in the other docu-
ments (e.g., see Document IV.1, Problems 24-29).

The remaining two extracts that comprise the remainder of
Document IV.3 come from Kahun LV. 4. (lines 30-62). They are
embraced by the general title: “Example of calculating the problems
() of account-keeping.” The first problem is entitled “A Calcu-
lation” by Griffith, and apparently involves rectangular areas with
sides expressed in cubits, though a mention of henu (a pint meas-
ure) is puzzling. The second is “Account of the produce [of
fowls?]” and involves ducks, geese, and cranes.
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DOCUMENT V.3

The Kahun Mathematical Fragments

[A Table of Two; Kahun, IV.2; see Fig. IV.12, lines 1-10]

(I have first given the unadorned numbers of each line as they ap-
pear in the papyrus, but I have added commas to separate the num-
bers. I have followed each string of numbers with a bracketed
modem interpretation. Note that the first number of each line is un-
derstood to be 2. It is given in the first line and each line beneath it
is indented, presumably to indicate the same number 2 for all the
remaining lines. Hence, I have added a bracketed 2 in each line.]

[Lin. 1] 2, 3, 2/3, 2 [i.e,, 2:3 =2/3 since 2/3 of 3 =2].

(Lin. 2] [2,] 5, 173, 1 2/3, 1/15, 173 [i.e., 2:5 = 1/3 + 1/15, since
130f5=12/3,1/150f5=1/3,and 1 2/3 + 1/3=2].

[Lin. 3] [2,]7, 1/4, 1 1/2 1/4, 1/28, 1/4 [i.e, 2.7 = 1/4 + 1/28,
since 1/4 of 7=11/2 1/4, 1/28 of 7=1/4, and 1 1/2 1/4 + 1/4 = 2).
[Lin. 4] [2,]9, 1/6, 1 1/2, 1/18, 1/2 [i.e., 2:9 = 1/6 + 1/18, since
1/6 of 9=11/2, 1/180f 9=1/2,and 1 1/2 + 1/2 =2].

[Lin. 5] [2,] 11, 1/6, 1 2/3, 1/6, 1/66, 1/6 [i.e., 2:11 = 1/6 + 1/66,
since 1/6 of 11 =12/31/6, 1/66 of 11 =1/6, and 1 2/3 1/6 + 1/6 =
2].

(Lin, 6] [2,] 13, 1/8, 1 1/2, 1/8, 1/52, 1/4, 1/104, 1/8 [i.e., 2:13 =
1/8 + 1/52 + 1/104, since 1/8 of 13 = 1 1/2 1/8, 1/52 of 13 = 1/4,
1/104 of 13=1/8,and 1 1/2 1/8 + 1/4 + 1/8 =2].

(Lin. 7] [2,] 15, 1710, 1 1/2, 1/30, 1/2 [i.e, 2:15 = 1/10 + 1/30,
since 1/100f15=11/2, 1/300f 15=1/2,and 1 1/2+ 1/2=2].
(Lin. 8] [2,] 17, 1712, 1 173 1/12, 1/51, 1/3, 1/68, 1/4 [i.e, 2:17 =
1712 + 1/51 + 1/68, since 1/12 of 17 =1 1/3 1/12, 1/51 of 17 = 173,
1/68 0of 17=1/4,and 1 1/3 1/12 + 13 + 1/4=2].
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[Lin. 9] [2,] 19, 1/12, 1 112 1/12, 1/76, 1/4, 1/114, <1/6> [i.e.,
2:19 = 1/12 + 1/76 + 1/114, since 1/12 of 19 = 1 1/2 1/12, 1/76 of
19=1/4, 1/114 of 19= 1/6, and 1 1/2 1/12 + 1/4 + 1/6 = 2).

[Lin. 10] [2,] 21, 1/14, 1 1/2, 1/42, 1/2 [i.e., 2:21 = 1/14 + 1/42,
since 1/14 of 21 =1 1/12, 1/42 of 21 = 1/2, and 1 1/2 + 1/2 =2).

[Kahun Papyrus IV. 3.; see Fig. IV.12, Cols. 11-12]

[It seems evident that the problem being solved in the two col-
umns of numbers is: “Given the sum of 10 terms in arithmetic pro-
gression as 100 and the common difference of terms as 1/2 1/3,
what is the series?” ']

[Col. 11] [Col. 12]
\1 131/12 100 [items to be divided among] 10 [men)
[in arithmetically decreasing amounts]
2 2316 13 2/3 1/12
4 123 12 2/3 1/6 1/12
\8 3183 12 1/12
Total 3 2/3 1/12 11 1/6 1/12
10 173 1/12
9 1/3 1/6 1/12
8 233 112
7 2/3 1/61/12
7 112
6 1/6 112

[Kahun Papyrus IV. 3.; see Fig. IV.12, Cols. 13-14]

[What is the volume in khar (1 khar = 2/3 a cubic cubit) of a cy-
lindrical granary whose diameter is 12 cubits and whose height is 8
cubits? The procedure is to add 1/3 of the diameter to the diame-
ter, multiply the total by itself;, then multiply that result by 2/3 of the
height, i.e., 5 1/3, to produce 1365 1/3 khar. I put the operations
of Col. 14 first).

[Col. 14}?
[\l 12)
23 8
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\1/3 4
Total 16.
V1l 16
V10 160
\'5 80
Total 256.
[Col. 13]
AW | 256
2 512
V4 1024

\ (1/30)* 85 1/3  [*2/3 in Papyrus]
Total 1365 1/3 [khar].

[Kahun Papyrus XLV. l.; see Fig. IV. 12, lines 15-22]

[The following lines 3present 7 large numbers and a fraction. Their
context is not known.” ]

[Lin. 15] 925,157 173

[Lin. 16] 708,453 1/3

(Lin. 17] 709,533 1/3

[Lin. 18] 500,098 2/3 1/8 1/16

[Lin. 19] 470,042 2/3

[Lin. 20] 440,003 1/6

(Lin. 21] 209,200

(Lin. 22] 1/12.

[Kahun Papyrus LV. 3.; see Fig. IV. 12, lines 23-28]'

[Lin. 23] 1/2 [of a quantity] minus (?) 1/4 of it yields S.

(Lin. 24] What number says it (i.e., satisfies the statement)? Pro-
duce [a remainder of] 1

(Lin. 25] after 1/4 is subtracted from 1/2. The result of it is 1/4.
Calculate with 1/4

(Lin. 26] to find 1. The result is 4 times.

(Lin, 27] Take 5, 4 times. The result is 20.
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(Lin. 28] [Hence] it is 20 that says it (i.e., satisfies the initial
statement).’

[Kahun Papyrus LV. 4.; see Fig. IV. 12, lines 30-42]

(This fragment is on the first of three pages. The problem is in-
complete in both its beginning and its end. It uses the word for
square root (knbt, i.e., “corner” or “right angle™) in line 40, also
found in the Moscow Mathematical Papyrus.® 1 have followed the
text of Griffith for the most part, but have departed from his trans-
lation in line 42.7]

[Lin. 30] Example of the calculating of problems (?) of ac-
count-keeping.

[Lin. 31] ..........

(Lin. 32] ...

[Lin. 33] ...of the henu (pint measure) ?....

(Lin. 34] Take 40, 3 times.

{Lin. 35] The result is 120. Take

[Lin. 36] 1/10 of 1{20]. The result is 12.

{Lin. 37] Calculate with 1/2 1/4 to find 1.

{Lin. 38] The result thereofis 1 1/3. Take

(Lin. 39] 12, 1 1/3 times. The result thereof'is 16.

{Lin. 40] Take the square root [of it], which is 4. Take
[Lin. 41] 1/2 1/4 of 4. The result is 3.

{Lin. 42] The result is 10 rectangles (h3yf) of 4 cubits by 3.

[Kahun LV. 4.; see Fig. IV. 12, lines 43-54]

[This is the second page of the fragments of this papyrus; the third
page (lines 55-62) is so incomplete that I have not added it, though
it is given in its incomplete state by Griffith and can be found on
Fig. IV.12. The account given here is not very clear, as Griffith
notes, but he concludes: “In . 54 it is perhaps found that 11 birds,
each of an average value of 5 sef-ducks, would balance the account:
p- 3 [too fragmentary to include here] may then have showed how
these were best to be distributed amongst the different kinds.”® The
reader will note that Document IV.1, Problem 83, concerns the
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feed necessary for several similar birds. The final column in the
translation under ‘Total value’ is not present in the papyrus, but is
suggested by the calculations of lines 50-54. I have followed Grif-
fith in adding the headings to the columns.]

[Lin. 43] Account of the produce [of fowls (?)].
[Lin. 44] List (rh) of the produce of 100 [Set-] ducks.
[Lin. 45] Paid to him from amongst this list:

[Value of [Number of [Total

each one in each) value]
Set-duck]
[Lin. 46] Re-goose 8 3] [24]
[Lin. 47] Terp-goose 4 3] [12]
{Lin. 48] Djendjen crane 2 3] (6]
{Lin. 49] Set-duck 1 (31 (3]
[Totals:] [12] [45]

(Lin. 50] 1 is subtracted from the number of fowl;

(Lin. 51] the remainder is 11. Calculate the excess of 100
{Lin. 52] over 45. The result thereofis 55. Do

{Lin. 53] the multiplication of 11 to find 55.

(Lin. 54] The result thereof is 5 times.

Notes to Document IV.3

! The important correction to Griffith's reading of the first item in column 12 is
that made by S. Couchoud, Mathématiques égyptiennes (Paris, 1993), p. 164:
“100 10" instead of Griffith’s 110. Everything falls into place if this reading is
accepied. The suggestion by Gillings, Mathematics in the Time of the Phar-
aohs, pp. 178-80, which accepts 110 as the sum, and accordingly a series of 12
terms, but without the last two specified, is less probable, and 1 feel sure is to be
rejected. So also to be rejected is his earlier article: “Mathematical Fragment
from the Kahun Papyrus,” Australian Journal of Science. Vol. 29, No. 5
(1966), pp. 126-30. But see his uscful discussion of the steps given in RMP
Problem No. 64 in his short “Sum of n Terms of an Arithmetical progression in
Ancient Egypt,” Australian Journal of Science, Vol. 31, No. 1 (Sydney, 1968),
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pp. 47-48. Gillings’ comments as to what the Egyptians could have done with
their knowledge of arithmetical progressions are somewhat fanciful.

Going back to the text as given, it should be noted that the highest
term A in the series is determined precisely by the steps indicated by the for-
mula: h = (S/n) + m-1) (d /2), where S is the sum of the terms (100), n is the
number of terms (10), and 4 is the common difference between terms (2/3 +
1/6). Hence Col. 11, starting with /2, i.e., 1/3 + 1/12, shows that when it is
multiplied by n-/, i.e., by 9, the result is 3 2/3 1/12. Then, moving on to Col.
12, S/n, 100 /10 becomes 10 and when added to the result of Col. 11, yields the
highest term, namely 13 + 2/3 + 1/12. The succeeding terms were then deter-
mined by subtracting the common difference. The reader should compare this
?mblemwithmblem&oﬂheRhindPapym

For a discussion of this problem, see Chapter 4, section “Volumes.” Note that
in Col. 14 in Fig. IV.12 8 small circle is drawn preceding the numbers. 1t is
marked with 12 (the diameter) at its top and 8 (the cylinder's height) on its left.
In the last calculation of Col. 13, the multiplier should be “1/3,” as I have given
it. The papyrus erronecusly has “2/3.”

3 As far as 1 can judge, neither an arithmetical nor a geometrical series is ovi-
udent in these numbers as written. One trivial point can be noted. The number
in line 15 is the only onc of the long numbers that is indented.

“ This is a problem involving an unknown of the type we have seen often in the
first two documents. 1t is like solving the equation (1/2)x — (1/4)x = 5 by first
assuming that x is 1 and then converting the false remainder (1/4) to the true
remainder (5), i.e., finding the multiplier of 1/4 that produces 5. The answer is
of course 20.

5 A further fragment is given as line 29: “Example of proof (1p n $yty),” an ex-
pression also found often in the Rhind Papyrus (e.g., Document 1V.1, Problems
32-35, 37-38).

¢ See Document IV.2, notes 10 and 11.

"For the translation of A3y as “rectangle,” see Schack-Schackenburg, “Der
Berliner Papyrus 6619, Z4S, Vol. 38 (1900), p. 137. This translation is found
in Wb, Vol. 3 (1971), p. 15, item 19, but with a “7” following it. Cf. S. Couch-
oud, op. cit., pp. 138-39. Line 33 remains obscure. 1t may be that the problem
involved a volume, but the remaining lines point to a problem concerning the
areas of rectangles. Note that Couchoud questions Griffith’s reading “heaw” in
line 33. If it is not a volumetric measure that is being used, then we need not
find a more complex volumetric interpretation, as does Schack-Schackenburg
(op. cil. supra, pp. 129-30) and Gillings, op. cil. , pp. 162-65 (who suggests
it is a problem of simultancous equatious of the form xy = A and x = ky).

® Griffith, Hieratic Papyri from Kahun and Gurob, p. 18.
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DOCUMENT IV 4
The Berlin Papyrus 6619: Introduction

Judging from their nature, the mathematical fragments
treated here as Document IV.4 were apparently composed about
the same time as the Kahun and Moscow Mathematical Papyri,
namely, sometime from the second half of the 12th dynasty through
the 13th dynasty. The Berlin fragments were first presented by
Hans Schack-Schackenburg in two articles: “Der Berliner Papyrus
6619,” ZAS, Vol. 38 (1900), pp. 135-40 and Tafel IV.1, and “Das
kleinere Fragment des Berliner Papyrus 6619,” ibid, Vol. 40
(1902), pp. 65-66. Concerning the first problem (see Fig. IV.13,
1), he was able to reconstruct its basic purpose and content, as Ar-
chibald neatly indicated in his extensive Bibliography of Egyptian
Mathematics appearing in Volume 1 of Chace’s edition of the
Rhind Papyrus under the year 1900:

The problem here referred to may be stated thus: Distribute
100 square ells [i.e,, square cubits] between two squares
whose sides are in the ratio 1 to 3/4; whence the equations
¥ +)/ =100, x: y=1: 3/4, corresponding to those given in
Griffith (1897). The equations are solved by the method of
false position and the solution of two term quadratic equa-
tions. On the back of this fragment of the papyrus [see Fig,
IV.13, 2] is another problem somewhat similar to no. 69 of
the Rhind papyrus. A translation of both sides of this frag-
ment is given by A. Erman and F. Krebs, Aus den Papyrus
der koniglichen Museen, Berlin, 1899, pp. 81-82, “Aus
einem Rechenbuch;” but the authors acknowledged their in-
ability to give an explanation.

Under the year 1902, Archibald also briefly characterizes
the smaller fragment of the same papyrus (see Fig. IV.13, 3):
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We have here a problem similar to that in the larger frag-
ment, and leading to the equations ¥’ + ’ =400, x: y=2:
1172,

Gillings in his oft-cited Mathematics in the Time of the
Pharaohs, pp. 161-62, also points out the two sets of simultaneous
equations which embrace the data and the arithmetical steps of the
two fragments, In addition, he gives a free English translation,
without bracketed additions, of the German rendering of the longer
problem proposed by Schack-Schakenburg (see note 1 to the
document below) and a summary of the shorter fragment based on
the German author’s second article.

After the original transcription and translation of these
fragments by Schack-Schackenburg, the most important reexam-
ination of the problems is that of Sylvia Couchoud in her perceptive
work: Mathématiques égyptiennes (Paris, 1993), pp. 131-34 and
142-43. In regard to the longer fragment, she presents “some new
points of view on the transcription and translation.” 1 have taken
them into account in my translation.

DOCUMENT IV 4
The Berlin Papyrus 6619

[The Longer Fragment; see Fig. IV.13, 1; Fig. IV.l14a; and Fig.
.15a]

{Lin. 1] Another [example of dividing a given rectangular (i.e.,
square) area of 100 (square cubits) into two smaller squares.)’
If someone says to you: [“100 square cubits is divided] into [2] un-
known [square surface-] quantities (“Aw) [and 1: 1/2 1/4 is the ra-
tio of the side of]
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[Lin. 2] the first quantity to that of the other quantity, please make
known to me the unknown [surface-]quantities.”

[Lin. 3] The calculation of [one of the] rectangles is with 1 always
and the calculation of the other is with 1/2 1/4 of 1; [the result of
1/2 1/4 of 1 is 1/2 1/4. Take]

[Lin. 4] the 1/2 1/4 of the [side length] of the one surface quantity
(i.e., square) for the [side of the] other. The result is 1/2 1/4, Mul-
tiply it by [1/2 1/4. The result is 1/2 1/16 for the area of the smaller
square surface).

{Lin. 5] [Hence] if the quantity of the [side of the larger] square is
1, and that of the other is 1/2 1/4, [and] you will take the sum [of
their squares, ]

(Lin, 6] the result is 1 1/2 1/4 (delete) 1/16 (i.e., 25/16). You will
take its square root. The result is 1 1/4, You will then take [the
square root of 100].

[Lin. 7] The result is [10]. Reckon with this 1 1/4 to find 10 (i.e.,
find the multiplier of 1 1/4 that yields 10). The result is the quantity
8 [for the side of the larger square].

{Lin, 8] [You will take 1/2 1/4 of ] this 8. The result is [the quan-
tity 6 for the side of the smaller square].

[The Shorter Fragment; see Fig. IV. 13,3, Fig.14b, and Fig. 15b]

[Presumably the missing problem-title was presented in a form
somewhat like the following: Example of dividing a square rec-
tangular surface area of 400 square cubits into two square ar-
eas whose sides were related as 2 : 1 1/2. Then on the basis of
the procedure in the longer fragment, the method of false position
would dictate the assumption of the side of the larger square as 2
and that of the side of the smaller square as 1 1/2, and thus the
squares as 4 and 2 1/4 and their sum as 6 1/4, Then follows the
extant text of the fragment:]

[Lin. 1] ...You should extract the square root of 6 1/4.. [i.e., 2 1/2]
[Lin. 2] ...[Take] this 2 1/2, which remains....[You take]
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{Lin. 3] [...the square root of 400, i.e., 20]. Reckon [with 2 1/2 to
obtain 20]...[The result is 8] times. {Multiply 8]

[Lin. 4] ..[by 2 and 1 1/2.] You should [now] say to him, the
square root(s]

{Lin. 5] ...[of the component square]s according to this calculation
(Irt) [are 16]

[Lin. 6] ...[and] 12. You say it is found ...[i.e., correctly?]®

Notes to Document IV .4

'I follow the line-numeration of Schack-Schackenburg. Notice that in Fig.
IV.I3,1 Schack-Schakenburg provides the hieratic text of the longer fragment,
and that Fig. IV.14a gives S.-S.’s hicroglyphic transcription of that text while
Fig. IV.15a presents S. Couchoud’s transcription and French translation. 1
note further, as 1 have already said in the Introduction to the document, that
Gillings (op. cit.. p. 161) gave a free translation of S.-S.’s German rendering.
It follows:

“If it is said to thee...the area of a square of 100 [square cubits] is equal to that
of two smaller squares,

The side of one is 1/2 1/4 the side of the other. Let me know the sides of the
two unknown squares.

Always take a square of side 1. Then the side of the other is 1/2 1/4.

Multiply this with 172 1/8, It gives 1/2 1/16, the area of the small square.

Then together, these two squares have an area of 1 1/2 1/16.

Take the square root of 1 1/2 1/16. 1tis 1 1/4,

Take the square root of this 100 [square] cubits. 1t is 10,

Divide this 10 by this 1 1/4, 1t gives 8, the side of onc square.

The remainder is very much damaged, but what docs remain lcads Schack-
Schackenburg to restore [it] as| follows:]

Take 1/2 1/4 of these 8. It gives 6, the side of the other square.”

Gillings notes that the procedure for taking the square roots of 1 1/2
1716 and 100 is not given and he suggests: “If these were not done mentally,
they were no doubt read off or checked from a table of squares (see Chapter 21),
Neither is the working shown for 1/2 1/4 of 8 = 6, and we may justly conclude
that the scribe was more concerned to show how his method of false position or
false assumption was applied to the solution of equations than to teach the
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arithmetic of multiplication of fractions and the squaring and square rools of
simple fractions.” I note that no such Egyptian table of squares has been found.
In my quotations from Gillings 1 have converied his form of expressing unitary
fractions by the reciprocal notation with macrons above the numbers. 1t will be
noticed that 1 have kept much closer to what is actually said in the text than the
free version of Gillings. 1 do not claim that the expressions in brackets in my
translation are anything more than informative additious to suggest what the
author may have intended. Of course, that which remains unbracketed is what
can be read in the surviving fragment. | recommend particularty that the reader
keep a close eye on Couchoud’s transcription and discussion of this fragment.
2This bracketed addition in bold type is very speculative; but, in view of the
succeeding text that can be read, something like it was probably given.

> This is correct slnce 16% + 12° = 400.
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DOCUMENT IV.5

The Mathematical Leather Roll in the British Museum:
Introduction’

The Mathematical Leather Roll at the British Museum was
acquired by the Trustees of the Museum in 1864, having been a
part of the collection of Egyptian antiquities assembled by A.H.
Rhind in Thebes.? Its purchase followed Rhind’s death. It will be
recalled that the Rhind Mathematical Papyrus (Document IV.1
above) was also a part of that collection. But unlike that more fa-
mous work it was, as its commonly used name indicates, written on
leather rather than papyrus. Consequently it was far more difficult
to unroll, that not being accomplished until 60 years after the roll’s
purchase.’ The early history of the roll after its acquisition by the
Museum is described by Glanville.*

The presence of the leather roll in the British Museum was
common knowledge at the time of, or at any rate immedi-
ately after the publication of the first complete study of the
[Rhind] papyrus, for Eisenlohr states the fact when describ-
ing the papyrus, and adds that the leather was too brittle to
unroll. Some years later Professor Griffith saw the roll and
recognized a fine hand in the beginnings of numerical signs
which could be seen just inside the edge. So that although
there was still no means of unloosening the coil, there were
yet no grounds for the curious scepticism as to its actual
existence on the part of one of the most learned of living
Egyptologists [i.e., Gunn]. The question of unrolling was
again brought up last year [19267] by Professor Griffith,
who had heard, in Berlin, of a new treatment for softening
ancient leather. In the interval between his first sight of the
roll and his chancing on this German process, that whole
department of archaeology which consists in the “restora-
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tion and preservation of antiquities” had been organized,
and the brilliant successes of Lucas in the Valley of the
Kings were being matched at home by research in the labo-
ratory attached to the British Museum, and by the regular
Reports of its Director, Dr. Alexander Scott, F.R_S., on the
museum objects submitted for treatment. It was therefore
possible to reconsider the unrolling of the leather
roll....Even with the most promising theories there was
bound to be some risk. However Dr. Scott undertook to
carry out the operation, and his account of the process,
given in an addendum to this article (pp. 238-9), shows how
completely he succeeded. From the scientific point of view
it can hardly be denied that the dissemination of the knowl-
edge of this chemical treatment of the leather is of greater
value than the publication of the contents inscribed on it.

Glanville goes on to say that the hopes expressed by some
(and particularly Eisenlohr) that the work was very important and
perhaps even “the original of [the work on] the papyrus roll” were
not realized by the actual contents. “In place of the hoped for trea-
tise on Egyptian mathematics which was to explain all the difficul-
ties in the Rhind Papyrus, we have a copy in duplicate of 26 sums in
addition of fractions!”

But this pessimistic appraisal of the signficance of the
leather roll for understanding the ancient Egyptian procedures in-
volving fractions has been reversed as the result of the accounts of
the leather roll given by Vogel, Neugebauer, van der Waerden and
Gillings, as our account of Egyptian fractions in the fourth chapter
has shown. The result is that the 26 equalities, twice given in the
roll, are now considered highly relevant to our understanding of the
Egyptian treatment of fractions.

The English translation given here as Document IV.S is
based on Glanville’s translation, photographs of both copies of the
hieratic text (Figs. IV.16a and IV.16b) and their hieroglyphic
transliteration (Figs. IV.17a and IV.17b). It presents no significant
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paleographical problems. Columns 1 and 2 suffered from fragmen-
tation and hence the intact copy in Columns 3 and 4 had to be used
to restore the text of Columns 1 and 2. The restorations are indi-
cated within closed brackets. That the second copy was made from
the first seems clear from the fact that the trivial errors of the first
copy reappear in the second copy.’

Notes to the Introduction to Document I1V.5

' The introduction to this short document is rather abbreviated because it has
been discussed at some length in Chapter Four.

2The initial description, edition, and translation of the roll was made by S.RK.
Glanville, “The Mathematical Leather Roll in the British Museum,” JE4, Vol.
13 (1927), pp. 232-39.

3 A. Scott and H.R. Hall, “Laboratory Notes: Egyptian Leather Roll of the 17th
Century,” British Museum Quarterly, Vol. 2 (1927), pp. 56-57, and | plate. See
also Scott’s “Addendum™ to Glanville’s article cited in note 2 above, pp. 238-
39.

“ Glanville, op. cit. in note 2 above, pp. 232-33.

*Ibid., p. 233.
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DOCUMENT IV.5

The Mathematical Leather Roll of the British Museum

[First Copy: Cols. 1 and 2; see Figs. IV.16a and IV.17a.]

[Col. 11]

{Lin. 1] 1/10 1/40 itis 1/8
[Lin. 2] 1/5 1120 itis 1/4
[Lin. 3] 1/4 1112 itis 1/3
[Lin. 4] [1/10] 1/10 itis 1/5
[Lin. 5] [1/6 1/6) it is 1/3
[Lin. 6] [1/6 1/6 1/6) itis 172
[Lin. 7] [1/3 1/3] itis 2/3

[Lin. 8] [1/25] 1/15 [1/]75 1/200  itis 1/8
[Lin. 9] [1/50] 130 [1/]150 1/400 it is 1/16

[Lin. 10] [1/]25 [1/)50 1/150 itis 1/6 (sic, should be
1/15)

[Lin. 11] [1/9] [1/18) itis 1/6

[Lin. 12] [1/7) [1/14] 1/28 itis 14

[Lin. 13] [1/12] [1/2)4 itis [1/8)

[Lin. 14] 1/14 1/21 1/42 itis [1/7]

[Lin. 15] [1/18] [1/2]7 1/54 itis [1/9)

[Lin. 16) [V12 (sic?, should be 1/22)* 1/33] 1/66
itis [1/11]

[Lin. 17) [1/28 1/49] 1/196 it is [1/13 (sic?, 1/14)°)

[Col. 2:]

{Lin. 1] 1/30 1/45 1/90 itis 1/15

[Lin. 2] 1/24 1/48 it is 1/16
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[Lin. 3] 1/18 1/36 itis 1/12
[Lin. 4] 1721 1/42 <itis>* 1/14
[Lin. 5] 1/45 1/90 itis 1/30
[Lin. 6] 1/30 1/60 itis 1/20
[Lin. 7] 1/15 1/30 itis 1/10
[Lin. 8] 1/48 1/96 itis 1/32
[Lin. 9] 1/96 1/192 <it is>1/64

[Second copy: Columns 3 and 4; see Figs. IV.16b and
IV.17b]

[Col. 3:]

[Lin. 1] 1/10 1/40 itis 1/8
[Lin. 2] /5 1/20 itis 1/4
[Lin. 3] V4 112 itis 1/3
[Lin. 4] 1710 1/10 itis 1/5
[Lin. 5] 1/6 1/6 itis 173
[Lin. 6] 1/6 1/6 1/6 itis 1/2
[Lin. 771/3 173 itis 23
[Lin. 8] 1/25 1/15 1/75 1/200 itis 178
[Lin. 9] 1/50 1/30 1/150 1/400 itis 1/16
[Lin. 10] 1/25 1/50 1/150 it is 1/6 (sic, should be 1/15)
[Lin. 11)1/9 1118 itis 1/6
[Lin. 12] 1/7 1/14 1728 itis 1/4
[Lin. 13] 1/12 1/24 itis 1/8
[Lin. 14] 1/14 1721 1/42 itis 177
[Lin. 15) 1/18 1/27 1/54 itis 1/9
[Lin. 16] 1/12 (sic, in fact 1/ 22) 1/33 1/66

itis 1/11

[Lin. 17] 1/28 1/49 1/196° it is 1/13 (sic, 1/14)
[Lin. 18] 1/30 1/45 1/90 itis 1/15
[Lin. 19] 1/2[4] 1/4[8) it is [1/1)6°
[Col. 4:]

[Lin. 1] 118 [1)/36’ itis 1/12
(Lin. 2] 1/21 1/42 itis 1/14
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[Lin. 3] 1/45 1/90 it is 1/30
(Lin. 4] 1/30 1/60 it is 1/20
(Lin. 5] 1/15 1/30 itis 1710
[Lin. 6] 1/48 1/96 itis 1/32
[Lin. 7] 1796 1/192 <it is>* 1/64.
Notes to Document IV.5

! The error appears to be that the scribe looked at the conclusion of the next line
and mistakenly wrote it down here.

2We do not know whether the error is present, but it probably is, since it is in
the copy in line 16 of Column 3.

3This error is in line 17 of Column 3 and so was probably also here in Column
1.

4 Omitted in both copies here and in line 9.

3 van der Waerden would correct the expression to 1/26 + 1/39 + 1/78 instead of
making the correction of 1/13 to 1/14, which I have here suggested on the eco-
nomical basis of making one change rather than three.

® The bracketed numbers in this line are given in copy 1.

? As in copy 1.

® Omitted in both copies; see note 4.
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DOCUMENT 1V.6

Sections G-I from Reisner Papyrus I: Introduction

Document IV.6 consists of Sections G-I, which I have taken
from the integral group comprised by Sections G-K of the so-called
Reisner Papyrus I of the Museum of Fine Arts in Boston (see Figs.
IV.18a-IV.18j). The chosen sections are those that represent best
the mathematical formulations followed by the accountants. The
editor of the Reisner Papyri, William Kelly Simpson, describes the
discovery and the character of the Reisner Papyrus I succinctly:*

The document which forms the basis of this publica-
tion [i.e., Reisner Papyrus I] is an Egyptian account papyrus
of the second reign of Dynasty 12. It was found during the
excavations conducted [in 190]1-04] by the late Dr. George
Andrew Reisner on behalf of the University of California at
Nag* ed Deir [the necropolis for the ancient town of This), a
site roughly opposite Girgeh in Upper Egypt ...The papyrus
is now in the Museum of Fine Arts [in Boston]....[and]
bears the museum accession number 38.2062.

The Papyrus was one of four rolls discovered lying
on one of the three wooden coffins in tomb N 408..., as an-
nounced briefly by Reisner in 1904. A number of years after
their discovery the rolls were sent to the late Dr. Hugo Ib-
scher, then the director of the Papyrus Sammiung of the
Akademie der Wissenschaften in Berlin. Under his meticu-
lous care the papyri were unrolled and the fragments put in
place....

The [Reisner]Papyrus [I]...measures approximately
3.50 meters long in its present state...has a maximum height
of 31.6 cm. and is made up of nine sheets of papyrus, the
first and last of which are incomplete and the remaining
seven of which are approximately 42 cm. long....
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In common with many of the account papyri of the
Middle Kingdom and the Old Kingdom, there are ruled
guidelines to assist the scribe in aligning his writing,

Simpson goes on to discuss at some length the question of
the dating of Reisner Papyrus I, and initially decides that it belongs
to either the first or second reign of Dynasty 12 (those of Amme-
nemes I and Sesostris I). But his ultimate preference is for the
reign of Sesostris 1.2

As the title of my document indicates, I have confined it to
the calculations of Sections G-I of the papyrus, but it will be useful
to discuss briefly the whole group of Sections G-K. They consist of
accounts that refer to a building construction. The section letters
are ones assigned by the editor for the purposes of editing and ref-
erence. The year to which they apply is not given; nor is the reign-
ing Pharaoh’s name mentioned. But the editor suggests assigning
them to the period between IV Peret 6 and II Shemu 20 of the year
24 of Sesostris I.’

As Simpson suggests,* the building for which the Sections
G-K provide four accounts (G-J) and a summary of those accounts
(K) appears to have been a temple, a cenotaph, or a tomb “since
two of its component parts are designated as the august chamber
and the eastern chapel....The final result is a record of the total
number of man-days expended on the undertaking during the period
involved, a relatively substantial figure of 4312 1/2 man-days. The
general bearing of this type of calculation on the daily rosters and
lists of men elsewhere in the document and in the other Reisner pa-
pyri is obvious, since one type records the details of the expenditure
of labor and the other type provides the names of the individuals so
employed.” Being actual accounts these sections deal with com-
pleted, actual quantified activities, and thus differ, for the most part,
from the preceding documents of this chapter, which are concerned
largely with methods of calculating model practical arithmetical or
arithmetical-geometrical problems that would involve whole num-
bers and fractions, or with tabulated calculations useful as reference
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tables for simplifying the Egyptian arithmetical procedures of dou-
bling, halving, multiplying or dividing by ten, and summing or sub-
tracting whole and fractional quantities, Since the principal object
of the set of documents for Chapter Four is to illustrate the nature
of Egyptian mathematics and its techniques, most of the documents
included in this volume do just that. Hence the problems in those
documents were in general contrived with simplified numbers and
answers to avoid extensive series of calculations. But Document
IV.6, as an illustration of an actual account rather than a didactic
device, is the only lengthy one I have included to illustrate the
techniques of account books in the present volume. However I
have also included a Middle Kingdom table from the temple at Illa-
hun that illustrates actual accounts and (like Document I'V.6) shows
the necessary procedure of approximating fractions in order that
they may be realistically measured (see Figs. IV.33 and IV.34, as
well as the section “Pefsu Problems” in Chapter Four above). Of
course, the reader may also remember that I have frequently men-
tioned account books and tables of actual quantitative data in Vol-
ume Two, as for example, the day books of the Temple of Illahun
(see the index of that volume under “Illahun™).

Simpson’s summary of the general content of the sections
that make up this document is well worth quoting, along with his
remarks about the complexity of the accounts:’

Section G is an account of the pmw (mw?), a term possi-
bly to be understood as rubble or a type of earth, prepared,
utilized, or removed in the construction of the building.
Section H is a list, with measurements, of the blocks of
stone hauled from the storehouse and the amount of sand
carried for use in specific subdivisions of the operation.
Section I deals with calculations involved in the various
stages of brickwork and related materials. In Section J a
detailed accounting is rendered for the distribution of man-
power to the general work force, to specific subdivisions of
it, and to miscellaneous tasks relating to the transport of
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personnel and materials, in which several varieties of wood
figure prominently. The summary in Section K consists of a
recapitulation of the expenditure of man-days in each of
these operations. One cannot fail to be amazed and bewil-
dered by the complexity of the bookkeeping practices
whereby the accountant recorded such details as the exact
dimensions of blocks of stone to a fraction of a finger-
breadth and the sum of man-days to a fifth of a working
day. Even more extraordinary, if our present interpretation
is correct, is the implied existence of a set of rigidly fixed
ratios between the volume of the material operated on and
the number of man-days expended or allowable for complet-
ing the specific tasks with this cubic content.

As a matter of fact, it may be remembered by the reader of
the earlier volumes of my work that some similar rules seem to exist
concerning the use of fractions in specifying the annual maximum
height of the Nile in the yearly boxes of the Early Annals on Stone
(=the so-called Palermo Stone), which I presented as Document I.1
(see Volume One, pp. 109-113), and in giving fractions of hours in
a table of the lengths of daylight and nighttime in a late document
of Dynasty 26 (see Volume Two, pp. 101-06).

The calculation of the accounts in the current document is,
in principle, not of great difficulty since it involves the determina-
tion each day of the number of enlistees required for a given task,
by (1) first multiplying the product of the listed length, width, and
thickness or depth of the materials involved (i.e., the volume of the
materials) by a specified number of like construction units demand-
ing the same volumetric totals (usually 1 or 2 but once 4). This fi-
nal volumetric total for each line of entry is then silently divided by
10, presumably indicative of the value of 10 cubic cubits that each
enlistee would be able to do in a day. The final result, then, in the
last column was the total number of enlistees or workers needed for
that day’s work, i.e., the allowed number of man-days for that day’s
task. The unit of linear measurement for the dimensions in these
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accounts is the cubit and/or its fractions (either expressed as some
general unit fraction or sum of unit fractions or in terms of the palm
equal to 1/7 of a cubit and the fingerbreadth equal to 1/4 palm).
These are measures we have already discussed in Chapter Four and
in the various documents that have preceded this one. One peculi-
arity is that although the volumetric answer is obviously in cubic
cubits and its fractions, its fractional component is sometimes ex-
pressed in so many palms and or fingerbreadths, which terms are
elsewhere confined to linear measures. It seems evident that in
such cases what is meant by the terms is 1/7 and 1/28 of the cubic
cubit,

Though the calculating formulas assumed in the Reisner Pa-
pyrus I are not themselves difficult and produced many wholly cor-
rect calculations, the fact that so much effort was exerted to specify
the tabulated data in detailed fractions of a cubit as well in whole
cubits tended to produce a number of errors, some serious and
many merely slips. Still others were probably intentional approxi-
mations since only approximations of the fractional amounts were
thought necessary. These errors and approximations I have pointed
out in the course of Document IV.6 (leaving the correct calcula-
tions without comment). Both correct and erroneous entries have
been retabulated in a series of tables by R. J. Gillings (see my Figs.
IV.19 and IV.20) and discussed by him in a thoughtful but specula-
tive and hardly conclusive way as follows:®

My interpretation of Simpson’s translation of Reisner Papyri
I and I leads me to conclude that the chief overseer of the
dockyard appointed a skilled scribe to instruct the tally clerk
in multiplication and division for the records of the work-
shop. The scribe’s teaching for integers and the simple
fractions of a cubit like 2/3, 1/2, 1/3, 1/4 was well done, be-
cause of the 65 entries made by the clerk, there were 11 that
contained only integral values of cubits, and for these the
clerk’s arithmetic is 100 percent accurate [e.g., see lines 15-
16 of Section GJ....
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In those lines where [numerical] fractions of cubits were
included, only 3 errors occurred, so that in the 31 of these
calculations, the clerk was 90 percent accurate. [For a cor-
rect example, see line 27 in Section H.]....

There are 11 entries that include measures in cubits and
palms but no [entirely numerically expressed] fractions.
Now here the clerk began to find a little difficulty, because
the palms must be expressed as fractions of a cubit, and so a
table of fractions of a cubit would need to be prepared and
handy for reference.

Gillings goes on to hypothesize such a table, namely, that in
Fig. IV.21, which gives the successive values of 1 palm, 2 palms, 3
palms, 4 palms, 5 palms, and 6 paims as the sums of unit fractions
of a cubit. But the calculation of a cubit volume where the dimen-
sions included values in cubits and palms (with the latter converted
to sums of unit fractions of cubits), for example, in calculating the
cubic cubits of the volume in line 24 of Section H, would have in-
volved the addition of some 33 fractions in total, which Gillings
concluded was far too cumbersome. And so he believes that the
scribe instead developed an easier method of calculating the vol-
umes, which Gillings deduced from the manner in which line 11 of
H is presented: [length:] 3; 1 palm [width:] 1 [depth:] 1 [volume:]
3; 1 palm:

The volume, here found mentally, clearly means 3 cubic
cubits and one seventh of a cubic cubit, although it is writ-
ten as 3 cubits 1 palm. One seventh of a cubic cubit would
be a flat rectangular prism, 1 cubit by 1 cubit by 1 palm, and
from the analogy of the modern “superficial foot™ in measur-
ing timber, I will call this the Egyptian “superficial cubit.”
This I think is quite justified, since in every one of the RP
[i.e., Reisner Papyrus] calculations, the volume is stated
simply in cubits, palms, and fingers, without any suggestion
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of square cubits or palms, nor of cubic cubits or palms. And
this simplified method of stating the volume or cubic con-
tents allows of a much easier way of doing the required
multiplications, which I am sure the scribe invented and ex-
plained to the clerk, although I have no direct evidence to
prove it, working only with what is to be deduced from the
multiplications before us in the Reisner Papyri.

Gillings then takes the data of line 24 of Section H, i.e,
length = 3¢ Sp, width = 1c 2 p, and depth = 6p, and using his sug-
gested simplifying technique, he gets the following results: (3c 5p)
x (1c 2p) x (6p) = 4c Op and (4 4). The steps Gillings proposes to
represent the Egyptian method of finding that result are shown in
Fig. IV.22. Note that the (4 4) which is the last part of Gillings’
determination of the volume with his newly suggested procedure
differs from the 4c 2f found in the papyrus. That latter entry Gil-
lings believes to be a scribal error, or at best a rough approximation
of the (4 4). But I remain doubtful about the so-called “Egyptian
superficial cubit” as a device to simplify the calculations with frac-
tions. It seems to me that among the possible methods dealing with
the extensive multiplication of fractions discussed by Gillings, his
second method, which would reduce all the linear measures to
palms and then divide the product (expressed in cubic palms) by
343 (which is the number of cubic palms in 1 cubic cubit), is more
straight-forward and would obviously be the more familiar proce-
dure to the Egyptian calculator, even though cumbersome. Of
course, Gillings is perfectly correct in his conclusion that when
fractions of volume are expressed as palms or as fingerbreadths in
the final product, we must accept that they are used as volumetric
fractions equal to 1/7 and 1/28 of a cubic cubit. Still, without the
accountant’s working notes we cannot be sure just what were his
calculating procedures in the entries involving palms and fingers.

In my effort to check the accountant’s determinations of the
number of enlistees or man-days by dividing the volumes by 10, at
least where fractions are involved, I have found useful the Egyptian
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Table of the Divisions of the first 9 numbers by 10 given in Docu-
ment IV.1 before Problem 1, as will be evident to the reader.

Document IV.6 follows Simpson’s translation quite closely
with only minor changes of form and explanatory additions.” I have
also transcribed the seasons in the manner I followed in the earlier
volumes: “Peret” and “Shemu” instead of Simpson’s “Proyet™ and
“Shomu.” For the hieratic texts and hieroglyphic transcriptions of
all five Sections G-K (and not just those of Sections G, H, and I,
which are given here as my Document IV.6), see Figs. IV.18a-j. As
in the preceding documents, rubricated words are given in the
translation in boldface instead of the more conventional underiining
employed by Simpson. They are largely confined to the entries in
the “units” column (e.g., see Section G, every line), to totals (G,
19; K, 17), to dates (H, 22,25,28,30-31,33-34; L, 1; J, 1, 10), to
sundry other numbers and words (see underlined items, passim, in
Simpson’s translations [op. cit, pp. 125-28]), and to a title (K, 1).
Note that I have added an extra space after each numbered line,
though that was not my procedure in some of the previous docu-
ments. I have done this in this document to reduce the apparent
clutter that would have resulted from squeezing them together. 1
remind the reader that the full edition of this and the other Reisner
Papyri has been masterfully executed by Simpson and the reader
will profit greatly by consulting that edition at first hand.

Notes to the Introduction to Document IV.6
! Papyrus Reisner I: The Records of a Building Project in the Reign of Sesos-
tris I. Transcription and Commentary (Boston, 1963), pp. 17-19.

2bid., pp. 19-21.
3 pbid., p. 22.

this and the next three quotations and accompanying discussion. Note that
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throughout Gillings® work he has used the reciprocal form of writing unit frac-
tions, i.c., with the denominator number superscribed by a horizontal bar (and
no unit denominator). For example, see Figs. [V.19-1V.21.

"Op. cit. innote 1, pp. 124-26.
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DOCUMENT IV.6

Sections G-I from Reisner Papyrus |

[Section G; see Figs. IV.18a and IV.18b]

[Lin. 17" (oo, F [Column heads:}’

[a.] [Leng]th ({3}w) [b.] width (wsh) [c.] [thickness or
depth] (mgwr) [d.] <units> [e.] product or volume (sty) [f] [the
calculation of enlistees (ir m hsb, i.e., the needed number of enlis-
tees for the day’s work*)).

LT3 N ] (a]38 []12 [c][71? (A1 (1] [e]
3(192]7 [£] (319 1/5]?

[Lin. 3] Lo ] (2125 [©.]120 [c.][..] [d.][] [e]
L))

(Lin. 4] [......... the august chamber] [a.]15 [b.]5 [c.][...] [d]
(] [e10)5 [£1L.--)

[Lin. 5] [-........... ] tr. in this chamber [a.]3 [b.][2] [c.][2] [d.]
1[e]12 [£]1[1/5).

[Lin. 6] [given to him in] the eastern chapel of the akhty (?) [a] 8
[b.]5 [c]1/4 [d]1 [e]10 [£]1.

[Lin. 7] portal of this chamber [a.]3 [b]2 1/2 [¢.]
1/4 [d.]1 [e] 2 1/2 (sic; should be 1 1/2 1/4 1/8) [f] 1/5 1/20
(correct for vol. 2 112, but should be 1/10 1/20 1/40 1/80).

[Lin. 8] [(month and day)] given to himin [.......... ]1[a]35 [b]11
[c.]{1/2] [d.][1] [e.] (1192 1/2 [£] 19 1/2 (should be 19 1/4).
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[Lin. 9] (a]13 [b]
11[c]11/22 [d.]1 [e] [2]14 1/2 [f] 21 1/2 (an approximation
Jfor 21 1/4 1/5).

[Lin. 10) .[a]52 [b]3
[c.] 174 [d.]1[e.] 39 [f] 4 (approx. for 3.9 in modern terms or in
Egyptian terms for 3 2/3 1/5 1730, the fractions as given in the
Table of Division by 10 in Doc. 1V. 1, before Problem 1).

[Lin. 11] .[a]32 [b]
4 [c]1/2 [d.] 1 [e] 85 (sic, but should be 64) [f.] 8 1/2 (correct
Jor the erroneous 85, but for the proper 64 it should be 6.4 in
modern terms, or in Egyptian terms 6 1/3 1/15, the fractions as
given for the division of 4 by 10 in the Table of Division by 10
quoted above).

{Lin. 12] [given to him] in the portal of the [king’s] drit-chamber
as pmw

.[a)31/2 ]2 [c]23 [d]1 [e] 4273 [f] 1/2 (approx. for
1/3 1/10 1/30, the Egyptian way of expressing 1/10 of 4 2/3).

[Lin. 13] [...] Shemu 25, given to him [as] jm‘w in the chamber
for emptying (or read for drying) [a.] 10 1/2 [b.]8 1/2 [¢.] 1/3 (D)
[(d.] 1 [e.] 27 (sic, but should be 29 1/2 1/4) [f] 2 1/2 1/S (corr. for
27, but should be 2 2/3 1/5 1/20 1/30 1/40).

{Lin. 14] [gilven [to him] in this chamber [a.] 8 [b.] 3 [¢.] [1/3]

[d.]1 [e.]8 [f] 1/2 1/4 1/20 (which is obviously equivalent to 2/3
1710 1/30, the value used in the Table of Division by 10 for 8 di-
vided by 10). )

(Lin. 15] [...] Shemu 27, given to him in hmw to support (?) the
column-bases (?) [a.]6 [b.]4 [c.]2 [d]1 [e.]48 [f]41/21/4
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1/20 (cf. the unit fractional expression for the division of 8 by 10
in the preceding line).

(Lin. 16] (a4 [b]2 [c]2 [d]1[e] 16 [f] 1 [1/2]
1/10.

{Lin. 17] [(month and day)] given to him [........ ] “footings” [.......]

[2]4 [b]4 [c]2 [d]2 [e][64] [£] 6 [1/4]

1/10 1/20.

(Lin. 18] (313 [b.]3 [c]2 [d])2 [e][3)6 [f]31/2
1/10

[Lin. 19] [Totals] [e.] 4335 [f.]
435

[Section H; see Figs. IV.18¢c and IV.18d]

[Notice that only the product/volume column has a heading
in this section. The column letters employed by the editor are the
same as in Section G and indeed the succeeding sections. The final
column concerning enlistees is not present in this section. The lin-
ear measure without verbal identification is always the cubit. I fol-
lowed the editor in using a semicolon to separate it from any num-
ber of palms which are given in the text. In fact I have followed the
editor in spelling out “palms” and abbreviating fingerbreadths “fb.”
Gillings’ suggested restorations of erroneous numbers given below
are found in Fig. IV.20.]

{Lin. 1] I Shemu 16, given to him in (for?) hauling stone from the
st[orehouse].
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[Lin. 2] [a.] 2; S palms [b.] 6 palms [c.] [.....(restored by Gillings
as 6 palms, but with the comment “probably too great™)] [d.] 2 [e.]
4,113 .

[Lin. 3] [a.]21/4 [b.] 6 palms [c.] [..... (restored by Gillings as 5
palms)] [d] l.. [e] l...; 2 palms; 2...fb. (calculated as 1c; 2p; 1/2
1/14 fb. if the value of [e.] as 5 palms is assumed).

(Lin. 4] [a.] 2 [1/4 (? suggested by Gillings)] [b.] tr. (= “trace”
here and below) (6 palms) [c.] [.....(restored by Gillings as 5
palms)] [d.][.... (17)] [e.] [....] 3 palms; [...].

[Lin. 5] [a.] 2 1/4 [b.] 6 palms ... [c.] [..... (restored by Gillings as
5 palms 2 fb. with the comment “probably too great™)] [d.] 1...
[e.] 1; 3 palms; 1 1/2 fb,

(Lin. 6] [a.]4 1/4 [b.]tr. (6 palms?) [c.] [...] [d]2 [e] 6172
1/4.

[Lin. 7] [2]3 1/4 [b]tr. (1 122) [e]tr. (172) [d]2 [e]4 172
1/4 1/8.

(Lin.8) [a.]21/2 [b.)11/2 [c]1/2[d.]]1 [e] 11/21/41/8.
[Lin. 9] [a.]4 1/2 [b.] [..... (1 1/2; suggested by Gillings)] [c.] tr.
1 + 1/3 (which fraction should be deleted) [d.) 2 [e.] 13 172 [if
Gillings' b. is correct, then the pap. erronoeusly adds here 6, 4, 1;
4pl

(Lin. 10] [a.]4;1 palm [b]11/2 [c]1/2tr. [d]] [e]3;2(!3)
fo.

(Lin. 11] [a.] 3; 1 palm [b.] 1 [c] 1 + 1/3 (which rubricated
Jraction should be deleted) [d.] 1 [e.] 3; 1 palm.
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(Lin. 11B] [d.] [Total:] 18 (sic, should be 14 7)
{Lin. 12] I Shemu 28, spt (column-base ?)

{Lin. 13] [a.] 2; 3 palms [b.] 2; 3 palms [c.]2/3 [d.]1 [e]3;6
palms; 1 173 fb. (Gillings sees this as a minor error for 3; 6 palms;
21/141/42 /%)),

(Lin. 14] I Shemu29 [a.]2; 2. [b.]11/2 [c]1; 1 palm; 1 fb.
[d.] 1 [e.] 3; 4 palms; 1 1/2 fb. (Gillings sees this as a minor error
Jor 3, 4 palms; 2 1/2 1/28 fb.).

(Lin. 15] [a.]1; 5Spalms [b.]11/2 [c.] 5 palms [d.]2 [e]3;5
palms (Gillings sees this as a minor error for 3; 4 palms; 2 1/2 1/4
1/14 1/28 b.).

[Lin. 16] [a.] 2; 3 palms [b.] 1; 4 palms [c.] 5 palms; 2 fb. [d.] 1
[e.] 2; 5 palms; 2 1/2 fb. (Gillings sees this as a major error for the
approximation 2; 6 palms; 3 1/2 fb.).

(Lin. 17] [a.]4 [b.] 1;3 palms [c.] 1 [d.] 4 [e.] 22; 6 palms,

(Lin. 18] [a.] 3; 2 palms [b.] 1;2 palms [c.] 6 palms [d.] 1 [e.]
3; 3 palms; 2 1/3 fb. (Gillings sees this as a minor error for 3, 4
palms; 1 1/3 1/15 fb.).

(Lin. 19] [a]3; 5 palms; 2 fb. [b.] 1;3 palms... [c.]1 [d]] [e]
4; 2 palms; 3 tb. (Gillings sees this as a major error for 5; 2 palms;
31/41/7128B.).

(Lin. 20] [a.] 3; 3 palms [b] 1; 3 palms [c] 1[d]1[e]§

(Gillings sees this as an approximation or error for 4; 6 1/4 1/28
palms).
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(Lin. 21] [a.] 1; S palms [b.] 1;3 palms [c.]1 [d]1 [e] 2; 4
palms; 1 ... fb. (Gillings sees this as a major error for 2; 3 palms;
1121114 1.).

(Lin. 22] [a.]12/3 [b] 1; 3 palms [c.] 1 -I Shemu last day-
[d.]1 [e]2;2(?) palms; 2 ... fb. (Gillings sees this as a minor er-
rorfor 2; 2 palms; 2 2/3 fb.).

(Lin. 23] [a.] 4 [b.]1;6 palms [c.] 6 palms [d.]1 [e]4; 1 fb,
(sic; Gillings sees this as a major error for 6, 2 palms; 2 1/4 1/28
.).

(Lin. 24] [a.] 3; 5 palms [b.] 1; 2 palms [c.] 6 palms [d.] 1 [e.] 4;
2 fo. (Gillings sees this as a minor error for approximately 4,2 1/3
1/5 1/15 fb.).

(Lin. 25] [a.]11/2 [b]1/21/4 [c.]] -II Shemu 1- [d.]2 [e]2
1/4. Total: 100; S palms; 3 fb.

(Lin. 26] [a.]21/2 [b]1/21/4 [c]1 [d.]2 [e] 3 1/21/4.
[Lin.27] [a.]31/2 [b]11/2 [c]11/2 [d]2 [e]151/21/4,
[Lin. 28] [a.] 4; 4 palms [b] 1 ..; 5 palms [c.] ]; 2 palms -II
Shemu 7- [d.] 2 [e.] 20; 1 palm; 1 1/2 fb. 23 (sic; Gillings has the
scribe s value as 20; 1 palm; 1 1/2 fb., and sees this as a minor er-
ror for approximately 20; 1 palm; 1/4 fb.).

{Lin. 29] given to him as fill (db3w) consisting of sand: the great
chamber.

{Lin. 30] fa.] 12 [b.]5 [c.] 1/4 -IITI Peret- [d.] 1 [e.] 15.

(Lin. 31] [a.] 15 [b.] 5 [c] 1/4 -day 15 [d.]1 [e] 18 1/2 1/4.
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{Lin. 32] eastern chapel [a.]8 [b.]5 [c.]1/4to [d.]1 [e.] 10.

(Lin. 33] “footings” [a.]4 [b.]4 [c.] 2 -1 Shemu- [d.] 2 [e]
64.

[Lin. 34] [2]3 [b.3 [c.]2 -day 26- [d.]2 [e.] 36.

[Lin. 35) loads of the Per-Sa [a.] 8 [b.] 5 (sic, but should be 9)
[c.]1/4 [d.]] [e]18.

{Lin. 36] 50 (7)... rest.
(Lin. 37] great portal [e.] [total:] 100 1/2 69 (?) 45 1/2.
(Lin. 38] chapel [e.] 16.

(Lin. 39] spt (column-base?) [e.] 3; 6 palms; 1 fb.

(Lin. 40] great chamber [e.] 23 1/2 total: 143; 2 palms.

[Lin. 41] sand [e] 143 1/2 1/4.
[Section I; see Figs. IV.18¢ and IV.18f]

[The column heads [a.]-[e.] stand for the same measures as
in Sections G and H.]

(Lin. 1) IIH Peret 15.

[Lm 2] given [to him ] in (for?) striking ground: the great cham-
(a]12 [b.])5 [c]1/2 [d.]1 [e]30.

(Lin. 3] [given to him in] the august chamber [a.] [1]5 [b.] 5
[c]1/2 [d]] [e]37 102
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{Lin. 4] 43 [(month and day)] given to him in the eastern chapel of
the akhty (7). [a.]18 [b.]5 [c.][1/2] [d.] 1 [e] 20.

(Lin. 5] [(month and day) gi]ven to himin ... for..... [a.] [1]8 [b.]
1[1] [c.] [2/37] [d.]1 [e]132.

(Lin. 6] the western mh3w [a.] 32 [b.]4 [c.] [1/4]
[d]1 [e]32.

(Lin. 7] b3 the eastern mh3w [a.] 52 [b.] 3 298... (delete) [c.]
[1/4] [d.]1 [e]39.

{Lin. 8] [I (?) Shemu] 28, given to him as fill (db3w): the great
chamber [a.] 24 [b.] 5 palms [c.] 1/2 [d.] 1 [e] 8; 4 palms.

[Lin. 9] [given to] him in (for?) carrying srft [a.] 26 [b.]6 [c.] S
palms [d.]1 [e.] 111; 3 palms.

(Lin. 10] #r. [a.]20 [b.]5 [c.] 5 palms [d.]1 [e.] 71; 3 palms.
(Lin. 11]

(Lin. 12] given to him in (for?) loosening brick-clay [a.] 27 [b.] 7
[c]2 [d]1 [e]378.

{Lin. 13] I Shemu 1, given to him in (for?) removing (?) water
from the field [a.]8 [b.]7 [c.]2 [d.]1 [e] 112

[Lin. 14] II Shemu 2, given to him with the builders in the tower
(aJ11/2 [b]11/2 [c.]2 [d.]2 [e.] 9 [total:] 380.

{Lin. 15]).(a]21/2 [b]11/2 [c.]11/2 [d]2 [e] 11 1/4.
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[Lin. 16] .[a.]3 1/2 [0.]2 122 [c]11/2 [d]2 [e.] 25 1/4 (sic,
should be 26 1/4).

[Lin. 17] .[2.]4 [0.]2 1/2 81 1/2 (delete bold) [c.] 1 1/2 [d.] 2
[e.] 36 (sic, should be 30).

(Lin. 18] I Shemu 11, completed for him in brick-clay of the
fields [a.] 10 [b.] 5 1/2; 6 palms (delete bold) [c.] [?] 1/4 (should
bel) [d]1 [e]S5s.

[Lin. 19] [a.]16 [b.]51/2...... [c.] [?); 6 palms [d] 1 [e.] 75 1/4
1/5.

[Lin. 20] [a] 8 [b.]6 S[S6 1/4] (delete bold) [c]1 [d]1 [e.)
48.

{Lin. 21] completed for him in large-size brick.

Notes to Document IV.6

! The line numbers are those given in Fig. IV.18a.

2The headings written in lacuna here in Section G and efsewhere in Section 1
probably had some reference to the month, the season, and the day, according
to the evidence in lines 13 and 15 in G, lines 1, 12, 14, 22, 25, 28, 30-31, 33-34
in H, and lines 1, 8, 13, 14, and 18 in I, and many of the lines in J. As I noted
in the introduction to this document, Simpson has suggested that the year of
these accounts may have been the 24th year of the reign of Sesostris I. There
are occasional references in the general line headings to the part of the building
where the work is being done (e.g., lines 4-7, 12-15 of G, lines 1, 12, 29, 32;
37-40 of H, and passim in Section J).

3 The letters assigned to the column heads in brackets are those assigned by the
editor, and I have retained them throughout the document.

“For a discussion of this column head, which is restored here from lines I-1 and
J-1, see Simpson, op. cil., p. 53: “[Its form is] to be considered as a subjectless
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passive ...with the sense, ‘it is made as [so many] enlistees,’ the pertincnt num-
ber of enlistees recorded in each line under the heading. Now it is a curious
fact that the figure for the number of enlistees, more correctly the number of
man-days, is one tenth of the corresponding figure in the same line for cubic
content in [column ¢ of] the same line. The only obvious interpretation that
occurs to me is that one man, working a full day, averages the preparation, re-
moval, or putting into place of ten cubic cubits of the material known as bmw
[rubble?).” For a longer discussion of the volumetric calculations and the ratio
of volume to man-days, see pp. 83-85 of Simpson’s work. For hsb as
“workman” se¢ R.O. Faulkner, A Concise Dictionary of Middle Egyptian
(Oxford, 1962, repr. 1972), p. 178.
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PRMP = Pect, T.E,, The Rhind Mathematical Papyrus (London,
1923). See Bibliography.
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Index of Egyptian Words and Phrases

The Egyptian words of this index are given in True Type, a
transliteration font designed to run under Word for Windows. It
was created as part of Glyph for Windows (Utrecht, Paris, 1993)
which was programmed by Hans van den Berg and is used
throughout my third volume. When a glyph or glyphs of the
indexed item appears, the letter “g” has been added to the page
number. If brackets are added to the transliteration, this indicates
that only the glyph is present on the indicated page. Words begin-

ning with either of the two signs for “s” (i.e, — and | ') are
included under “s” in the index.

The reader may also wish to consult the glossaries or
indexes found in Peet’s edition of the Rhind Papyrus, Chace’s
edition of the same papyrus, Struve’s edition of the Moscow
Papyrus, and Couchoud’s treatment of Egyptian mathematics, the
titles of which are given in the bibliography above. The reader will
also find many other Egyptian words given in these glossaries that
are not in my index. For the glyphs of the powers of ten, see page
2, and for the signs of the Horus-eye fractions of a heqat, see Fig.
IV.3 and pp. 66-67, 98 n. 13, and 192 n. 46, 224, The section on
numbers and measures in Lesson XX (pp. 191-200) of Gardiner’s
Grammar (see Bibliography) is also useful. Needless to say, the
great Worterbuch of Erman and Grapow (see Bibliography) will be
indispensable to the reader seeking other references to these words.
The abridged Agyptisches Hand-worterbuch (Berlin, 1921; re-
printed at Hildesheim, 1974) of these authors is helpful. Also
useful is R.O. Faulkner’s A Concise Dictionary of Middle Egyptian
(Oxford, 1962; reprinted 1972),

Finally, the reader will readily see that the Index of Proper
Names and Subjects below contains Egyptian words that have been
transliterated with the addition of the letter “e” between consonants
for the purpose of making them pronounceable.
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3
3ht (“area” or “land surface”): 75, 92, 162, 218, 222.
3w (“long™): 228 n. 4, 270,
4,1

iwn (“pillar” or “column”; and perhaps a “cone”™): 91, 168.

Inr (“egg-shell™?): 92, 218, 233 n. 18.

ir (*do” or “make”); 154, 270; irt (“the doing” or “pro-
cedure” or “calculation”): 49, 134, 144, 155, 185 n. 6, 213, 252.

irpr{k] weh-{tp] (“Do the multiplication™): 134,

Itr (“the river measure,” = 20,000 cubits): 7.

idb (“bank™; mathematically the ratio of height to base): 71,
215,231 n. 13.

3 (“great”): 8.

pr (“provide™); 229 n. 6g,

%< (“stand™): 191 n. 38.

“h° (“quantity,” i.e., the unknown quantity): 50g, 105 n. 52,
117, 140, 144, 150, 250.

“d (“good condition™): 92, 218, 232-33 n.18.

w
wawt (“hour”): 98 n.13.
wh-(tp] (“multiplication™): 134.
wh3-tbt (“base-side”): 90, 166,
wsh (“width™): 270,

b
b$3 (“malt-grain™): 230 n. 7.

p
pf$w or psw (“cooking number” or “cooking ratio,” i.e., the
strength of bread or beer): 60, 174, 202 n. 103. See also pefsu and
pesu in the Index of Proper Names.
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pr-m-w$ (“altitude” of a pyramid™): 90, 166.
pri (“subtract” or “take away™): 227 n. 1.
phdt; 235 n. 20.
ps$ (“dividing™): 134,

f

31 (“to cook™): 60; féw: 60,202 n. 103,

m

my hpr (“as follows™): 134,

mryt or mrjt (“kathete” or “height” of a triangle; less likely
“side™): 70, 72-73, 163, 196 n. 68, 197 n. 70, 214,229 n. 5,231 n.
13.

mr (“pyramid”); 90, 166.

mh (“a cubit length” or “a cubit area, i.e., 1/100 of an
aroura™). 4, 8g, 166,.

mbh ni-swt (“royal cubit” = 7 palms): 7, 8g.

mb nds (“short cubit” = 6 palms): 8g.

mh3w (“some part of a building?”): 277.

mgwt (“depth™): 270.

n: 104 n. 47.

ny$: 118.

nbt (“basket”; possibly used for “hemisphere™): 92g, 218,
232-33n.18g.

’

r (“part,” ie., in the writing of fractions): 24-25g, 149g.
For the differing signs of the Horus-eye fractions, see the
introduction to this index.

rmn (“1/2 aroura™): 4, 99 n. 14; used as “1/2 13”; 12, 9 n.
14.

rmn (“upper arm” = 5 palms): 8g.
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rmnwy or r-mn-‘wy 10 (“equivalencies” or “up to 10
pairs™): 226, 237 n. 34.

rnpt (“year”): 171, 201 n. 96.

rht (“knowledge” or “reckoning” or “list” or “amount™): 75,
161, 162, 246.

h
hnw (1 hin or hen = 1/10 heqat, i.e., ca. .48 lit.): 14; or .503
lit.: 99 n. 16, 180.
hrw (“days”): 171.
h
h3 (“Oh™): 228 n. 3g.
b3yt (“rectangle™): 245,247 n. 7.
hmw (“rudder” or simply “a crafting™); 213,
hn° ( prep. “together with”): 105 n. 52.
hk3t (“a heqat” = ca. 292.24 cub. inches = a little more than
half a peck; in MK about 4.8 lit.): 14, 99 n. 17, 149; 4-hk3t: 81,
156, and see heqat in the Index of Subjects.
hsb (“1/4 aroura™): 4.
ksb (“1/4 87): 12,99 n. 14,
ksb (“enlistee” or “ worker”): 270, 279.
hsb (“reckon™): 172.
b
B3 (* 1000”, also “a 10-aroura measure” = 10 s¢3t =1000 3
=100,000 sq. cubits): 4g; also thought by Helck to be used as a
“10-43” measure, i.e, 1000 sq. cubits.: 12, 99 n, 14; h3-13 (*1000
13°): 99, n. 14.
b3 (“office” or “bureau™?): 277.
hbt (“subtraction”); 165, 199 n. 78.
fpnw (a kind of beer): 68.
&pr (“becomes™); 140,
[4f] (“a fist” = 1 1/2 palms): 8g.
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bmw (hmw?) (“rubble” or “earth utilized or removed in
constructions™): 263, 271,279 n. 4.

hnt, a prep. “in front of , etc.”; 199 n. 78.

Bt or ht-nwh (the “khet” = 100 cubits): 7.

bt-p3w n ¢ (“cedar mast™). 228 n. 4,

b

h3r, hirw (“a sack” = 20 heqat): 14, 81, 156, and see khar in

the Index of Proper Names.
s (for both ™ and p)

s3 (“1/8 aroura measure”): 4, 99 n.14; used by Helck (and
transcribed z3) for 1/8 3. 12.

Syty (“proof”): 139, 146,247 n. 5.

spt (“column-base?"). 274, 276.

spdt or §pds (“triangle™): 70, 163, 230-31 n. 13; §pd (“to be
sharp”™): 231 n. 13.

sntt (“base-side” or “diameter”?): 91, 168.

srft (7): 277.

5§ (“scribe™): 143,

$$mt (“procedure” or “working out™): 118, 122, 156.

skmt (“completion™); 136.

skd (“slope”): 90, 166.

sty (“product” or “volume™): 270,

st3t (an area of 100 13, i.e., 100 x 100 sq. cubits, also called
the “square khef” or “1 aroura”™): 4, 12, 99 n. 14, 195 n. 65.

sd3 (a kind of beer): 68.

Stwtl (“height™): 221.

§

$3: 235 n. 20g.

£3t <3 (or pt 3 or pd 3 - “great span” =3 1/2 palms): 8g.

$3t nds (or pt nds or pd nds - “small span” = 3 palms): 8g.

$bn or $bn (“mixing”): 66, 224.
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Sty (“shaty,” i.e., the value and weight of 1/12 deben): 169,
see also the discussion of shaty and deben on p. 201, note 92.

£ (“grain™): 154,

$sp (a “palm,” i.e., the sign is a hand without thumb = 1
palm = 4 digits): 8g. (two such signs, one above the other, is the
measure of two palms; see p. 8g); Sspt: 228 n. 4g.

k
knbt (“right angle” or “corner”-here only the determinative
= appears and is the sign for square root): 49,230 n, 10, 245.
ky n $$mif (“method of reckoning it”): 156.

-4
gm (“find”): 127,
t
3 (“land” or strip of land 100 cubits x 1 cubit, i.e., 100 sq.
cub.; hence a measure of area called a “cubit-strip,” a “cubit area”
or “a hundred [of land]”): 12, 99 n. 14,
twnw (“excess” or “difference™); 155.
tp (“example™): 134, 136, 139, 146, 155, 186 n. 14, 247 n.
S; for a discussion of its use in title of Rhind Papyrus and
elsewhere, see note 1, pp. 183-84g.
tpr or tp-r (“base” of a triangle; lit. “mouth™?): 70, 232-33
n 18.

gnwt (“counting”): 3.

d
dbh (“a vessel used in measuring grain™): 180.
dmd (“total™): 186, n. 8.
ds (“ajug,” a measure of beer): 15g.
d
d3t (“remainder”): 101 . 27, 186 n. 9.
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db3 (“exchange” or “make payment for”): 229 n. 6g.

[db3] (“digit” or “finger™): 8g.

db3w (“sand fill): 275, 277.

[drr] (“hand” or “handsbreadth,” i.e., full five fingers, = 1
1/4 palm): 8g.

drit (“chamber from which the king goes into a temple”; cf.
Wb, Vol. 5, p. 600): 271.

dsr (“the bent arm” = 4 palms): 8g.
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Index of Proper Names and Subjects

My indexing of proper names is quite complete. Less com-
plete is the indexing of geometric and other common terms that
occur throughout the volume, i.e.,, words like square, triangle,
fraction, quantity, etc. In such cases I have singled out the chief
sections in the volume that consider problems involving the nature
of, or the techniques and formulas for determining, such entities.
The reader will find a list in the Table of Contents of the subjects
treated in Chapter Four. Since that chapter attempts a survey and
analysis of ancient Egyptian mathematics as a whole, this list of
section heads is a ready guide to the most important subjects in the
volume.

Though in the preceding index I have given, in their accept-
ed form of transliteration, the Egyptian words mentioned in the
volume, here I have added references to their oft-used pronounce-
able forms. The reader should therefore consult both indexes for
any given term, e.g., hik3t in the first index and “heqat” in this index.
The reader is reminded that, as in the case of Volume Two, very
often there is more than one instance of the indexed word on the
page cited.

The Bibliography is not indexed here since it is a single al-
phabetical list of the works used and cited. But the names of the
authors mentioned in the text and endnotes are of course indexed.

A

Abd el-Rasoul: 205,

accounts at Illahun and This: 19, 68-69, 263, and see Figs.
1V.33-34 and Document IV.6 for detailed accounts.

Aha (King): 3.

Aha problems (i.e., those involving unknown quantities):
49-55, 140-48, 187-88 n. 21, 207-09, 224, 227, 227 n. 1, and see
“equations™ and “false position.” Also see “h° in the Index of
Egyptian Words.

Ahmose: 113, 122.
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Akhet: 113, 122, 203 n. 118.

Akhmim Mathematical Papyrus: 103-104 n. 36.

akhty: 270, 277.

algebra: 49-51, 53-55, 57, 65, 82, 86-88, 93, 104 n. 49, 106
n. 55,107 n. 59, 110 n. 71, 187-88 n. 21, 188 . 22, 190 n. 30, 227
n. 1, 237 n. 36; and for Egyptian problems expressed as algebraic
equations, see “equations”; also see “Aha problems” and “false
position.”

altitude: as breadth of a rectangle: 69, 215; of a cylinder:
193 n. 56; of the right square pyramid and its frustum: 88, 90-91,
117, 167-68, 200 n. 83, 206-07; of a trapezoid: 198 nn. 72-74; of a
triangle: 71, 117, 163-64, 195 n. 68, 197-98 n. 71, 207-08, 214,
and see “height.”

Amenembhet ITI (Nymatre): 5, 113, 122, 185 a. 3.

Amenofi II [Amenhotep IT]: 97-98 n. 10.

Ammenemes I: 262.

Annals on Stone: 1-5, 12, 201 n. 99.

Apophis, Hyksos king: see Awserre.

approximation: of fractions: 16, 19, 68, 74, 107 n. 61, 263,
2685, 267, 271, 274-75; of areas: 70, 76, 109 n, 67, 111 n. 76, 165,
195 n. 64, 196 n. 68, 198 nn. 72-74.

Archibald, R.C.: 120 n. 5, 121 n. 10, 211 nn. 2 & 6, 249-
50.

Archimedes: 20, 74, 231 n. 18, 234 n. 18.

areas: 1, 10, 12, 17, 19, 96 n. 8; summary, 68-80; of circles:
74-79, 162-63, 194-95 n. 64, 195 n. 67; of an octagon; 75-78, 107
n, 66, 162, 195 n. 64; of a rectangle: 6, 7, 68-69, 162, 165, 211 n.
S, 214-15; of the curved surface of a “basket” (possibly a semi-
cylinder or less likely a hemisphere [7]); 17, 91-93, 208-10, 212 n.
8, 218-219, 231-34 n. 18, 234 n. 19; of a trapezoid: 73-74, 163-65,
197-98 n. 71, 198 nn. 72-74; of triangles 6, 69-74, 107 n. 62, 163-
64, 195-97 n. 68, 197-98 n. 71, 211 n. §, 213-215, 222-23; and see
“ellipse.”

arithmetic progression: 17, 55-58, 117, 154-56, 170-71,
193 n. 54, 201 n. 94, 240, 243,246 n. 1.
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arithmetical procedures: 5, 20-23, 37, 41, 49, 51-52, 54, 64,
75, 84, 87, 93-94, 97 n. 10, 99 n. 20, 101-02 n. 29, 105 n. 52, 111
n. 78, 117, 120-21 n. 6, 168 ef seq., 187 n. 21, 191 n. 30, 202 n.
107, 227 n. 1, 233-34 n. 18, 236 n. 30, 240-41, 253 n. 1, 262-63,
265, and see “fractions.”

aroura (also written “arura™): 4, 12, 68, 99 n, 14, 230 n. 9,
236 n. 27, and see “setjat.”

auxiliary numbers: see “red auxiliary numbers.”

Awserre (the Hyksos King Apophis): 113, 122, 184 n. 2.

B.

Baillet, J.: 104 n. 36.

“basket” (a semi-cylindrical or hemispherical [?] container):
91-93, 218-19, 231-34 n. 18, 234 n. 19, and see “areas,” and nbt in
the Index of Egyptian Words.

beer: 1, 15, 17, 19, 60, 62-63, 68, 176, 178-79, 202 nn. 104
& 108, 209, 212 n. 8, 216-17, 220; exchange of bread and beer or
making portions of both: 67-68, 178-79, 202 n. 108, 207-09, 214-
17, 220, 225-27, 229 on. 6-7, 231 n. 17, 237 n. 35; 1/2 1/4 beer or
1/2 1/4 malt-beer: 63, 214-17, 220-21, 225-26, 229-30a. 7, 231 n.
15; sd3-beer and fpnw-beer: 68, 107 n. 61 (where they are alluded
to but not named); and see “des-jug” and “ pefsu.”

Benoit, P.:95n. 1,99 n. 20, 107 a. 61.

Berlin: its Akademie der Wissenschaften, 261; its Museum,
11; and see next entry.

Berlin Papyrus 6619: 17, 49, and see Document IV 4.

besha (a grain): 62,

Birch, S.: 114, 120-21 n. 6, 183-84 n.1.

birds, their feeding: 181-83; their values: 245-46,

Borchardt, L.: 11, 68, 78-79, 98 n. 13, 107 n. 61, 108-109
n. 67, 200 n. 90.

Boston, Museum of Fine Arts of: 18, 96 n. 7, and see Docu-
ment IV.6,

bread: 19, 60-68, 107 n. 61 (and see the entries under
“beer” since a large portion of them also include references to
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beer); offering bread: 66; see further references under “pefsu” and
“Upper Egyptian grain.”

British Museum: 113-16, 120 n. 1, 121 n. 9, and see the
“Leather Roll of’ and “Rhind Papyrus.”

Brooklyn Museum: 114,

Brugsch, H.: 114, 121 n. 7.

Bruins, EM.: 41, 101 nn. 22 & 29, 116.

Budge, EAW.: 196 n. 68.

Bull, L S.: 205.

C.

Cairo Museum : 11.

“Call 2 out of n”: the phrase explained, 185 n. 5.

Cantor, M.: 28, 51-53, 104-105 n. 49, 105 nn. 50 & 52,
206.

cattle counting or numbering and feeding: 172, 183, 201 .
99,

Caveing, M.: 99 n. 20,

Cha (or Kha as it is usually rendred): cubit-rods from hos
tomb: 97-98 n. 10.

Chace, AB., and his edition and translation of the Rhind
Papyrus: 12-15, 33, 36-37, 53-54, 70, 76,95 n. 4, 99 nn. 15 & 17,
101 nn, 26 & 28, 104 n. 37, 105 n. 50, 106 n. 56, 114, 116, 118-
19,120nn. 1 &3 & 5, 184 n. 1, and see Document IV 1, passim.

circle: see “areas.”

common denominator: 18, 26-27, 29, 52, 66, 100 a. 21, 101
n, 22, 103 n, 35, 119, 190 n. 30, and see “red auxiliary numbers.”

completion problems: 27, 34, 101 n. 22, 117, 136, 139-40,
187 n. 16, 191 n. 34,

cones: 91, 168, 200 nn. 82 & 88-89.

Couchoud, S.: 55, 78, 109 n. 67, 116, 195-96 n. 68, 237 n.
34,246 n. 1, 250, 252-53 . 1.

cubit: as a measure of length: 1, 7, 10, 96 nn. 5 & 8, 166-
68, and “cubit-rods” (below in this entry) and passim in the whole
volume; cubit-areas or strips (=1/100 of a setjat or aroura, q.v.): 4,
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99 n. 14, 164-66; cubit-rods: 7-12, 96-98 n. 10, 98 n. 13, and see
Figs. IV .24-27e¢; cubic-cubit: 13-14, 80-81, 156-57, and see “he-
qat” and “khar.”

cylinders: see “volumes.”

D.

Daressy, G.: 109 n. 67,

deben: 201 n. 92,

Democritus: 95 a. 1.

Den, King: 5.

des-jug, a liquid measure and particularly for beer: 15, 62,
176, 178-79, 214, 216-17, 220, 222, 225-27.

divisions: 22-23, and see “heqat,” “Table of Division,”and
“Table of Two.”

divisions by fractions: 143-48,

Djer, King: 3.

Djoser, King: 5.

Doll, SK.: 9-10.

Dra Abou’] Negga: 206,

E.

Edfu: 11,

Eisenlohr, A.: 28, 30, 32, 101 n, 22, 114-15, 121 nn. 8-10,
184 n. 1, 255-56.

Elephantine: 11.

ellipse, its area: 79, 108-109 n, 67.

Engelbach, R.: 90,

epagomenal days: 201 n, 96, 203 n, 118,

equations and their possible use by Egyptians: 51-55, 187 a.
21; 190-91 n, 30; simultaneous equations, 17, 57, 71, 212 n. 8, 230
n. 11, 231 n. 14, 247 0.7, 249-50; equations indicating equivalent
Egyptian arithmetic operations: 237 n. 36, and in end-notes 22, 24-
27, 29, 31, 33, 36, 39, and 43 of Document IV.1.

Erman, A, and F, Krebs: 249.

[Eslneh: 11,
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Euclid: 9, 207, 211 n. 5.

Example or exemplary rule or model: 94, 184 n. 1, and
some examples of the appearance of the term “example”
(translating 1p; cf. the Index of Egyptian Words) at the beginning
of the enunciation of a problem: 19, 27, 48, 64, 66, 68-71, 73, 75,
80-81, 83, 90, 92,

F,

false position: 17, 50-51, 53-54, 57-58, 105 n. 50, 187-88 n.
21,190n 30, 192 n 44, 193 n. 55, 201 nn. 93 & 95, 227 n. 1, 231
n. 14,247 n. 4, 249,251,252 n. 1.

Faulkner, RO.: 104 n. 47, 237 n. 34, 279 n. 4, 287.

Feast of the Rising of Sothis: 60.

feeding of birds and oxen: 181-83, 203 n. 114.

finger, fingerbreadth, digit: 1, 3, 7-9, 13, 80, 109 n. 68, 167-
68, 264-67, 272.

fractions: 3, 22-23, 24-42, 119, and see “Horus-eye frac-
tions,” “reciprocals,” and “red auxiliary numbers,”

frustum of a pyramid: see “volumes.”

G.

Gardiner, AH.: 4, 24-25,95n. 4, 99 nn. 14 & 16-17 & 20,
192 n. 46,230n. 1.

garment-cloth problem; 223.

geometric progression: 55, 58-60, 106 n. 56, 179, 203 n.
109, and see “Horus-eye fractions” as a geometric series,

geometry: summary, 68-93; mentioned: 2, 5, 17, 20, 93-94,
109-10 n. 68, 120 nn, 5-6, 121 n. 6, 209-10, 211 n. 5, ef passim,
and see “areas” and “volumes”, with their manifold citations,

Gillings, R J.: 53-55, 59, 70, 96 n. 5, 106 n, 53, 107 nn, 58-
59 & 61 & 64-66, 116, 187 n. 16; precepts for the Table of Two:
41-42; his G rule: 47, 2/3 table of fractions and other tables: 46-48,
104 nn. 38 & 41-46, on two-term equalities: 47, on harmonic mean:
67, 202 n. 107, 236 n. 32; on the area of a circle: 74-79, 107 nn,
64-66; on the volume of a cylindrical granary: 83, 194 n. 61; on the
volume of a frustum of a pyramid: 84, 110 n. 69; on the area of a
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curved surface of a hemisphere; 93, 233-34 n. 18; on red aux-
iliaries: 101 n. 22; on ostracon 153 from Sinuhe’s tomb: 102-03 n.
35; on geometric series: 107 nn. 56 & 58; on the use of propor-
tions: 107 n. 59; on the Moscow Papyrus: 212 n. 8; on the Berlin
Papyrus; 252-53 n. 1; on the Kahun Papyrus: 247 n. 7; and passim
in the discussions of most of the documents,

Glanville, S.R.K.; 255-56, 257 nn, 2-5.

Golenischeff (Golenishchev), W.S.: 205-06,211 n. 5.

grain: 1, 12-15, 17, 60, 62-63, 66, 80-82, 98 n. 13, ef
passim in the documents, See also “beer,” besha grain,” “bread,”
“Lower Egyptian grain,” and “Upper Egyptian grain,”

Greece and Greek mathematics and measurement: 2, 7, 74,
92, 100 n 20, 103-104 n_ 36, 120-121 n 6,231-32n 18.

Griffith, F.LL: 115, 121 nn. 9-10, 255; review of British
Museum’s and Eisenlohr’s editions of the Rhind Papyrus: 121 nn,
9-10; his “Notes™: 4, 28-31,95n. 4,96 nn. 5-6 & 9, 9 n. 14, 109
n. 68, 121 n. 10, 192 n. 46; his Petrie Papyri: 158, 239, 247 n. 8,
and Document IV .3; his “Rhind Mathematical Papyrus”: 101 nn.
23-24,121n. 10, 184, 1.

Guillemot, M.: 70, 72, 78-79, 94, 107 nn. 61 & 66, 111 n.
78,116,184 1. 1, 196 n 68.

Gunn, B.: 70, 255; his review of Peet’s edition of the Rhind
Papyrus: 44, 104 n. 40, 115-16, 195-96 n. 68; and see entry under
“Peet....his and B. Gunn’s.”

H.

Hall, HR.: 257 n. 3.

hand, handbreadth, hand spans: 1, 8-9, 48, 109 n. 68, 219,
228 n. 4, 236 n. 29; great span and small span: 8,

harmonic mean: 202 n. 107, 236 n. 32,

harpedonaptai: 95 n. 1.

Hatshepsut: 102 n. 35.

Hayes, W.C.: 10-11,96n. 10,98 n_ 11, 102-103 n. 35,

height (as a geometrical dimension): of miscellaneous solids:
85, 87, 89-90, 228 n, 4; of a cylindrical granary: 79, 81-82, 243,
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247 n. 2; of a pillar or cone (?): 91; of a rectangular granary: 80; of
a semi-cylinder: 218; of a trapezoid: 73-74; of a triangle: 69-73,
215,229 n S, 231 nn, 13-14; of a right pyramid and its frustum: 83,
86, 90, 110 nn, 71-72 & 75, 111 n. 75, 221; varying heights of the
ordinates of a curve: 79-80, 109 n. 68; and see “altitude.”

Helck, W.: 4, 12, 15,95-96n. 4,96 n. 5,99 nn. 14 & 16.

hemisphere: see “areas:...basket”; volume of a cylinder mis-
identified as that of a hemisphere: 194 n. 60.

hen or henu, hin: 13, 15, 46-47, 180-81.

heqat, grain or liquid volume-measure, its fractions (see
“Horus-eye fractions™ and “ro”), its multiples (“double heqat” and
“quadruple heqat™): 14-15, 4647, 80, 149-54, 156, 160-62, 183,
192 n. 45, and see “hen or henu” and “khar.”

Hero (Heron) of Alexandria: 110 n. 75.

Herodotus: 2, 95 n. 2.

Hilton Price Collection; 6.

Horus-eye fractions of heqat (a geometric series of fractions
from 1/2, 1/4...1/64 where each term is twice its successor); 13-15,
19, 23, 46-47, 58, 61, 66-67, 98 n. 13, 171, 173-77, 180-83, 192 n_
46, 201 n. 94, 203 nn. 110-11, and see the introduction to the Index
of Egyptian Words.

Hultsch, F.: 101 an. 22-23, 116, 121 n, 12.

Hyksos: 5, 113, and see “Awserre.”

L
Ibscher, H.: 261.
Illahun, Temple of: 19, 68, 211 n. 5, 263, and see “ac-
Indo-Arabic numerals: 4-5.
Isis, her epagomenal birthday: 203-04 n. 118.
Iverson, E.: 111 0. 77.

counts.

James, TGH.: 114,
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K.
Kahun Mathematical Fragments: 5, 17, 29, 55-56, 82-83,
201 n. 94, and see Document IV.3.
kathete: 70-71, 163, 214-15,229n. 5.
Kha; see Cha.
khar (a “sack” or 20 heqat = 2/3 cubic-cubit): 14, 80-82,
156-61, 24344, and see “heqat.”

khet (=100 cubits): 7, 12-13, 70, 73-75, 77-78, 162-64, 195
nn, 65-66, 198 n. 73, 214-15, 223,230 n. 9, 236 n. 27, and see jt in
the Index of Egyptian Words.

Khufu, his stone weight: 6.

Khnum (Chnum); 1L

L.

land measurement: 1-4, see “areas,” “cubit-areas,” and

“setjat.”
Leather Roll of the British Museum: 17-18, 25, 37-38, and

see Document IV.5.

Lenormant, F.: 114, 120n. 5.

Leonardo Fibonacci of Pisa: 203 n. 109,

Lepsius, CR.: 7-10,95 nn, 1 & 4, 96-97 n. 10, 109 n. 68.

log-sections, their computation: 219.

Lower Egyptian grain: 182.

Lucas, A.: 256,

Luxor, and Temple of: 78-79, 108 n. 67, 113.

M
malt-date beer: see “beer.”
Maspero, G.C.C.: 205.
Maya, Chief of Treasury: 9.
Medinet Habu calendar: 60.
Mendes: 11.
meret, meryt, merye!, or emrdyet: as height or side of a tri-
angle: 70-74, 195-96 n. 68, and see mryt in the preceding Index.
Metelis: 11.
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Metjen: 5-6, 12, 68.

Metropolitan Museum (New York): 10-11.

Moscow, Museum of Fine Arts: 205-06, 211 n. 5; its
Mathematical Papyrus: 5, 17, 91, 202 n. 103, and see Document
V.2,

multiplication: 20-21, ef passim; multiplications of fractional
expressions: 4344, 135-39,

N.

Nag® ed Deir: 261.

Narmer: 2.

Neugebauer, O.: 37, 39, 52, 72, 102 n. 30, 116, 256; his
Arithmetik und Rechentechnik. 59, 101 n. 29, 105-106 n. 52, 107
n. 57; his Exact Sciences: 103 n. 35; his Vorlesungen: 93, 101 n.
29, 110 n. 72, 111 n. 76, 211 n. 1; his “Zur agyptischen Bruch-
rechnung”: 101 n. 29.

New York Historical Society: 114,

Newberry, PE.; 113.

Nile and its height at Flooding: 2-3, 11, 264.

Ninetjer, King: 5.

Nymatre (King Amenemhet I1T): 113, 122,

0.
Ostracon 153 from Senmut’s tomb: 102-103 n. 35.
octagon: 75-78, 162, 194-95 n. 64.

P.

Palermo Stone: see “Annals on Stone.”

palm (= 4 fingers): 1, 3, 7-11, 13, 80, 90-91, 98 n. 13, 103
n. 35, 109 n_ 68, 166-68, 200 nn. 83 & 90, 223, 236 n. 29, 265-67
272-78,

Peet, TE.: his and B. Gunn’s “Four Geometrical Prob-
lems”: 70, 84-86, 88-90, 110 nn. 69-70 & 73-74, 196 n. 68; 230 nn,
9 & 12, 230-31 n. 13, 235 n. 27; his Rhind Papyrus. 5-6, 30-33,
44-46, 48-49, 68, 84, 95 nn. 3-4, 101 n. 25, 104 n. 39, 114, 116,
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184 n. 1, 195-96 n. 68; his “Mathematics in Ancient Egypt”: 52-
53, 67, 73-74, 91, 104 nn. 47-48, 105 n, 51, 105-106 n.52, 107 nn.
60 & 62-63, 110 n. 69, 111 n. 78; his review of Struve’s edition of
the Moscow Papyrus: 92-93, and passim in the end notes of
Document IV.2; his “A Problem in Egyptian Geometry:” 218-19,
232-33n. 18.

pefsu or pesu (“cooking-ratio” of bread and beer): 60-68,
174-79, 202 nn. 103-104 & 107, 207-09, 212 n. 8, 214-17, 220,
222,224-26,229-30n. 7,231 n. 17,236 n. 32,237 n. 3S,

Petrie, WM.F.:96nn, 5 & 8,

%: 74-75, 108-09 n. 67.

Pithom: 11

place-value system: 4-5, 20.

Procedure (“Working Out™): 122, 125, 128, 185 nn. 6 & 7,
et passim, and see sSm¢ in the Index of Egyptian Words.

proportion (used in computation): 48-51, 53, 57, 63-65,
100 n. 20, 110 n. 75, 187 n. 21, 202 n. 101, 231 n. 14; proportion
in artistic representation: 94, 111 n. 77.

Ptahhotep’s Proverbs: 6,

pyramids; see “volumes” and “seqed.”

Pythagorean theorem: 9.

Q.
quantification in Ancient Egypt: 1-20,
quantity: 25, 50, and see “Aha problems.”

R.
Ramesses III: 79,
Ramesseum: 113, 211 n. S,
Re: 1L

reciprocals: example of their use in computation: 18, 23, 30-
31, 33-36, 42, 44, 58, 66, 94, 169, 186 n. 7, reciprocal notation of
unit fractions: 102 n. 30, 104 n. 43, 119,253 n. L

rectangle: 6-7, 19, 68, 78-79, 109 n, 67, 162, 197 n. 71,
207, 214-15, 230 nn. 9 & 11, 245, 247 n. 7, 251; its role in the
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determination of the area of a triangle: 69-74, 107 n. 62, 163-64
196 n. 68, 197 n. 69, 214-15, 231 n. 14; see “areas” and also h3yt in
the Index of Egyptian Words.

red auxiliary numbers or red auxiliaries or auxiliary
numbers: 18, 26-27, 29, 37, 39-40, 66, 101 n. 22, 102-103 n. 35,
119

Reisner, G.A.: 261.

Reisner Papyrus I: 18, 43, and see Document IV.6.

remainder (i.e., the result of subtraction): 33-37, 56, 62, 74-
75, 81, 101 n. 27, 124, 126-28, 139, 143-44, 14648, 156-58, 163-
65, 170, 175-76, 182, 186 n. 9, 189 n. 27, 194 n. 61, 195 n. 67,
216-20, 225, 227 n. 1, 244, 246, 247 n.4, and see d3¢ in the Index
of Egyptian Words.

Rhind, AH.: 113, 255.

Rhind Papyrus: 5-6, 14, 16-17, 28, passim, and see Docu-
ment IV.1, and the entry “Chace.”

Ritter. J.: 95n. L

“ro” or “re” or “r” (“part,” frequently for 1 /320 of a heqat):
14, 22, 24, 149, and passim in the documents.

Robins, G., and C. Shute: 120 nn. 2 & 4.

Rodet, L.: 106 n. 56, 203 n. 109.

rope-stretchers: see “stretching the cord.”

S.
sack (khar): 14, and see “khar.”
Saqqara: 79.
Sarton, G.:96-97 n. 10.
Schack-Schackenburg, H.: 249-50, 252 n. 1, and Document

Schiaparelli, E.: 96-98 n. 10.

Scott, A.: 256, 257 n, 3.

Scott, NE.: 98 nn. 11-12.

Sélincourt, A.: 95 n, 2.

Senmut, tomb of: 102 n. 35; ostracon from: 102-103 n. 35.
seqed (“slope”; also transliterated by earlier authors as
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seked): of a pyramid, 90-91, 166-68, 200 nn. 82 & 83-85; of a
pillar (or perhaps of a cone): 91, 168, 200 nn. 82-83 & 88-90; and
see skd in the Index of Egyptian Words.

Sesostris: 2, 95 n. 2; Sesostris I: 262.

Set{h], his epagomenal birthday: 203-04 n. 118.

Sethe, K.: 99 n. 19, 116,

setjat or setat (“square khet”): used in area problems: 12,
162-66, 215, 222, 230 n. 9; fractions of a setjat with values (1/2 1/4
1/8) like those of the first three Horus-eye fractions of a heqat
(written in Italics here like the Horus-eye fractions, but in the
papyrus of Document IV.1 written in normal hieratic Egyptian
rather than with the special Horus-eye signs): 13, 164-66; and see
sp3t in the Index of Egyptian Words.

shadow-clock: 11,

shaty (a unit of value); 201 n, 92.

Sheikh Abd el-Qourna (Qurna), the Hill of: 20S.

ship’s-parts problems: 207, 213.

shoemaker-problem: 226,

Shu: 11.

Silverman, D.: 99 n. 20.

Simpson, W.K.: 18, 261, and see Document 1V.6, passim,

Sinuhe: 211 n. 5.

slope: of pyramids and pillars or cones: see “seqed.”

Smith, Edwin.: 113,

square roots: 48-49, 69, 71, 215, 230 n. 10, 245, 251-52,
252.53 n. 1.

squares: as a rectangular plane-figure of equal sides or as
the bases or sides of solid figures, and also as squared linear
measures such as sq. cubit, sq. khet, etc., and thus finally as the
ultimate units in which to express all area figures: 2, 19, 49, 54, 74-
79, 83-86, 89-91, 96. n. 8, 99 n. 14, 111 n.75, 120 n. 6, et passim
throughout the documents and their endnotes; tables of: 48;
squaring as a calculating procedure: 48, 83, 193 n. 56.

St. Ives-nursery rhyme: 106 n. 56, 203 n. 109,

stretching the cord: 5, 95 n. 1, and see Fig. IV.23.

307



ANCIENT EGYPTIAN SCIENCE

Struve, W.W.: 70, 72, 91-93, 184 n. 1, 195-97 n. 68, 202 n.
103, and see Document IV.2 passim.

T.

Table of Division by 10: 19, 42-43, 133-34, 186 n. 13, 271-
72; dividing loaves of bread among 10 men: 134-35; divisions of a
heqat: 149-54; the division of 100 quadruple-heqat by 10 and its
succeeding 9 multiples: 46, 161-62.

Table of Equalities of Unit Fractions: 19, 37-38, and see
Document IV S.

Table of Two (the division of 2 by the odd numbers 3 to
101): 16, 17, 19, 24-42 (and the endnotes to these pages), 99 n. 20,
102 n. 35, 122-33, 242-43.

Tables of Horus-eye Fractions of Heqat and Heau: 19, 180-
81.

Thebes: 97 n. 10, 102 n. 35, 113, 255.

This, town of; 261,

trapezoids: 73-74, 163-65, 195-96 n. 68, 197-98 n. 71, 198
nn. 72-74.

triangles: 6, 70-74, 163-65, 195-97 n. 68, 197-98 n. 71, 212
n. 8, 213-15, 222-23, and see spdt in the Index of Egyptian Words.

Tsinserling (sometimes transliterated Tzinserling), D.P.:
207,211-12 n. 6.

Turaev (Turaeff or Turajeff), B.A.: 206,211 n. 5.

Turin: 9, 97-98 n. 10.

Two-thirds Table (2/3 Table): 44-46.

U.
unknown quantities: 49-55, and see “Aha problems,” “alge-
bra,” and “equations.”
Upper Egyptian grain or barley: 63, 177, 216-17, 220, 231
n 17.
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V.

Van der Waerden, B.L.: 116; his “The (2:n) Table™: 25, 37-
41, 101 n. 22, 102 nn. 30-33, 185 n. 4, 256, 260 n. 5; his “Die Ent-
stehungsgeschichte der dgyptischen Bruchrechnung”: 102 n. 29; his
Science Awakening: 86-88,95n.1, 110 nn. 69 & 71.

Vetter, Q.: 37, 39, 101 n. 29, 110 n, 71.

Vleming, S.: 95-96 n. 4.

Vogel, K: 39, 76, 78, 90, 101-102 n. 29, 110-11 n. 75, 195
n. 64, 256,

volumes (volumetric measures and formulas): 1, 13-15, 17-
19, 43, 46, 74-75, 79, 80-93 (a summary); of a cylindrical granary:
81-83, 156-59, 193 nn. 56 & 58, 194 nn. 58 & 60-61; of a frustum
of a pyramid: 17, 83-90, 110 n. 71, 110-11 n. 75, 210, 211 n. §,
212 n. 8, 221, 235 n, 24; of a rectangular granary: 80, 159-61; of
rubble removed: 18, 80-81, and Document IV.6 in toto; and see
“cubic-cubit” and “heqat” above, as measures of grain contained
in a granary.

w.
water-clocks: 11, 200 n. 82,
wedyet flour; 63-66, 68, 177-79, 181,
weight: 6, 95 n. 4, 96 n. 5, 121 n. 10, 169, 201 n. 92, and
see “deben.”
Wolff, G.: 109 n. 68.

Y.
year of 365 days: 22, 171, and the epagomenal days: 201 n.
96,203 n. 118,
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Nlustrations

Introduction to the Illustrations

The illustrations which occupy the next 145 pages have, for
the most part, been taken from the chief publications in which
appear editions, transcriptions, or evaluations of the sources that I
have used to present Egyptian mathematics in this volume. While
many of them are used to illustrate or supplement my own
evaluations of the principal doctrines and problems, and are of
course tied by figure numbers to the texts and notes, some of them
present the hieratic texts and hieroglyphic transcriptions of the six
main documents. These latter figures are all mentioned by their
proper numbers in the introductions to the documents, so that a
reader of a given document can flip to the correct figure or figures.
However, following a suggestion of one of my reviewers, I thought
it might also be useful to specify here the numbers of the figures
that carry the text of each of the documents:

Document IV.1: Figs. IV 2a-aaa.

Document IV.2: Figs. IV 6a-t.

Document IV.3: Figs. IV.12,

Document IV.4: Figs. IV.13a-b, IV.14a-b, and IV.15a-b.
Document IV.5: Figs. IV.16a-b and IV.17a-b.
Document IV.6: Figs. IV.18a-j.

Sometimes the sources quoted in the captions to the figures
appear in a somewhat abbreviated form. But the reader can easily
find the full biographical citations of those sources in the Bibli-
ography at the beginning of Part III of the volume.
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Fig. IV.0 Lines § and 6 of the recto of the Palermo Stone as redrawn by
Pellegrini and extracted from Fig. 1.33 of Vol. I of my Ancient Egyptian
Science (cf. the photo of Fig. 1.32). The lines are divided into ycar-boxes (read
from right to leR). The separate scction at the bottom of each box gives the
reading of the Nile height for the year of the box. In line S, boxes | and 4, we

s at the left end of the Nile section the sign for the fraction 1/2: T} in box 3
of that line, the sign for 2/3: {7, and in line 6, box 4, the sign for 3/4: i7"
Note that Gardener in his Grammar, p. 452, gives the sign for 2/3 as = and

that of 3/4 as Tﬁ.
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Rhind Mathematical Papyrus from Chace et al, The Rhind
Mathematical Papyrus, Vol. 2 (Oberlin, Ohio, 1929), Plates 59-60.
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Rhind Malhemalical Papyrus from Chace el al. The Rhind
Mathematical Papyrus. Vol. 2 (Oberlin, Ohio, 1929), Plales 67-68.
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i WSO IBRALLY B3 A b1,

4 ;M WX =) a&rm 2 ,3:_;‘%’

. 3’;/\’— = A ﬁﬁ &»_-;>A

pregd _ ﬂ-,;zj; m:q /J‘ﬂk’w
”A."'-_-"I’Af\nﬂl 2ol V7 '?“\‘1’4:3’ AQY

Yol (o demeap Wip | ANE m oo dpef Lbg- G he o e

18] =8 ?"g ugn ol 122 |E"’.m""

prebin vaneal Geaph b opr 4as iy bm o diay dy-
FATIT TR el AR

Ym b n b hem ptebie wp A AR 2 e A e

.C;T--"z"?}_ﬂ.a"':*?: -4“11‘.426..\’4'@*"? J.

THY - Mhmep tp e = pleobie o

WA= AR A

Plaregrephs xo-xxn, Rg_iur 2 B. M. Facomile, Plate xv
Plate 80
PROBLEM 58

. g i hoRAl.zl
LR it ,%/ ﬂﬁ.ﬂf ;fy Ui«
/-1 ""-50’/";\/1'“-7/“5\3!‘"‘ 3L
wfﬁ‘ 5L

ew

S L ey

TG ek SIS RIS Zos-AT)

P R T P T L T
e = T Bl et ain 402 ol 2§n ],
[ T e i 5 oav m o prette makai v m em s osabent te] -temm
= o=
A L RN Tomle BT ST e~ AR~ ,
.-”raul’—"’:" bt boamgd Y ose (0 8 Mom opiehie @ 1wy s
- g s4E beapat
Lryd 'u-?!‘nhﬁlt =pop BV S0 R Fmmmi TS L ra=1TT
= dhipbng bmoaiwl  gmi fes 4hd wp ap tpldeed b afddagd tm ptemie b

Phacsgrophs xxi-xxu, Register 3 B. M. Facrimile, Plast v

Fig. 1V.2nn Hieratic text and Hieroglyphic transcription of the
Rhind Mathematical Papyrus from Chace et al, The Rhind
Mathematical Papyrus, Vol. 2 (Oberlin, Ohio, 1929), Plates 79-80.



APs33GR3 S NN N

PAJ‘J PO

wL,‘LMJ mmmumn 437
2% ToZ0s, 7% [-uT%u 7 Ba
Db‘z i mﬁ; > > “

= f;mm'“’/ 1174 §7

K

A?Y"’"

"" B Tt I~ T .,-.,-nu-...-,.x, S -
\ o"”ﬂ .an"'lf\n-.v cflegRca 20 =, 4R‘° 4 a"u"’“
hoaheol gwi g Vommeep fhahy dm-meap v wp i o L Y previe neahoi
AT A= nou sedia=~11], —I’”ﬁ-"& e '-'J'*ﬁwl‘, =
e hmotimg o sy t b a probla] cmiipdeg et ‘.,-..\..:..-. .«
% -l - "gm"L“ .o.—-rf‘o]f] =..../ (L Lannd } .
ot w oY i meabaphepied & -t (-ens o3 g , “p tm b +
R S "Am-ﬁ] d=xH T T
SeemeAp  A® € m g F o ow ptohim - PR
Plarsgrophs xxi-xxn, Regiver 4 B. M. Facuimite, Ploss xv
Plate 82

PROBLEM 60

N . (1% RS Lw;\m y..mn
&> 11 2HAZ
~z . m“w&b‘d ma umz,a
A~ nBZe

w4 A I DAL A T
N om0 T 2
LI ] propiew by e @f 50 m o biw  (capé g ke
=% CARNALe L BT AR = T=l A,
o BAIV= =20 J
w o/ e e

Phocographs xxi-xxn, Reginter §  B. M. Facrimila, Plass v

Fig. 1V.200

Hieratic 1ex1 and Hierogiyphic Iranscriplion of the
Rhind Malthemalical Papyrus from Chace el ai,

The Rhind

Mathematical Papyrus, Voi. 2 (Oberiin, Ohio, §929), Plajes 8i-82.

mdBAV TR ad D NP0 NA An.;" !}

'
]
>
'

1



U A .P;I_'.AL‘.. t—/;"l,_p .
.._f}' A8 SLEe o) 131/ .

..?—‘" l—» k’l— —‘A? /_Ln

s LR U2

>3 ﬁ)’ 3 /.31

-—«;lr’ ada"' '} ’/

DEER . wRE |
P Liaﬂm:'i?‘;:".‘%

.4"?7 B W—::k-

4+ LI R )

B e L '“/ Ui »1Al
X R T ~23 % HA >

P B a3

“om s

Plhocograph xxw, Right Half  B. M. Facsimile, Plasz xv.

Plave
PROBLEM 62
EnstRzeeieael  2=BIEER T RYL .ﬁ"
P o L 4 A0 A3 Blaificat s
Rl I i e Lol M S VO
.,.,A: bem iz R XY cilmIN3A72 a2 ool

T .4 e-q,u.. '.s "= rmwe=obid], %% 32°2,% _Ml.&;i“g_ﬂ‘_s-’

Ce b gri e epar g6 wae hmab T8 aiwmi ‘3 cl ‘-& [

AT S B iR o Sivmmzw..ﬂunm Farg
né-:,e.."lﬂﬂ': l:‘:%:.ﬁ:’? - 7 ;‘3‘—-3(]41uh—2‘ ‘u;‘-';_%
il 8B 2T 8 4 w0 SR L .

Cmarapr AT Tjen momp tgel as ,-c l\ .
NS T ImE~ «

spbymtal bk B a ke
08T S Hungh o MOz

P4 Cte b Baabeaph s py A 4 Dndp el
I e B .
La) -
JOSS § o ,
W ythe b
weoann cme " "
e .

Phocographs xxii-xxiv, Regissors 1-3 B, M. Faciimile, Plasst xvr-avit

Fig. 1v.2pp Hieralic 1ex1 and Hierogiyphic Iranscription of 1he
Rhind Maihemailicai Papyrus from Chace e1 al., The Rhind
Mathematical Papyrus, Vol. 2 (Oberiin, Ohio, 1929), Piales 83-84.



ﬁA:‘,anA-w.-‘E-“-’,',','?'.'.ﬂﬂ """""""""" I8 H2m Lo """"""" .
CELE D dEaE L8
x| 3 (] e . »

e 8= S|, >

e ,.«.. e =A™
marr e 1i th ubeab Sgn 4 iixbagh 4 33 ¢‘J LA O

- -
AW s sfsess e 8wl FI e iy s B o 2]

8.0t
LY R
o..x -7

e

T
3 ML moes n % Rehaiess Boew m 4 1 Reabai 8 @ \ l "/ J pﬂ‘- .
AL 2 sl S Ao Rl / - e .i o
Bamiefe (el cu = m 4 33N moes ) et mose b -
T Wiz $ a1
5 s Cnosee on arh gt ol S
PIPY wlile >
s e mWe
o 1 .t n L] h
"y ny o
wr oo e .t o l{’
. and

WIS s opp e Ly
3 ske 2 e ses w )

29 bty — =ha
LR R

Phocographs xuvi-xiv, Rgistors 4-5  B. M. Facsimila, Plases xer-xen

Plate 86
PROBLEM 64

28 NN T D22 21 E 1N
Zo% auzi ATl x12 {‘ 5% <29 E.;-};?m.h
k] 2 ,,QZ’ PO KLY |

292 Navs 242913 i'b 14 N Ellfpv
181G, Vs =2 A rAa . VEe Al

| —f oo k—mrenag—IorS RN T )

W jeemnomar e wep w1 m armpiles ag gm  oag Sep more
= Sl T it Rl‘llﬁ?ﬁﬁﬂ’vqfﬁ‘d.
4o luo Teb 1 W3 ¢ 1hny = TUip mp bhrwr 1w

e Bxfe =122 52 Q0em]] oo 8 Bt g =2,
iaeap Tatm T ihpal Biw iktRNEbab 0 wpr o ol b w --p

o [ FL T Iy N
v qmtal yebp qeb VRS S e @ oh b sige

1 g fan /B e A e Do q,s.‘:p-],

b and wiba Bk R N AT T Y R Y R T ORI VY FOPtE

Phorographs xun-xxiv, Rguier 6 B. M. Faciimile, Plases xv1-xvii

Fig. 1V.2qq Hieralic 1ext and Hieroglyphic Iranscriplion of lhe
Rhind Mathemailical Papyrus from Chace el al, The Rhind
Mathematical Papyrus. Vol. 2 (Oberlin. Ohio. 1929), Plales 85-86.



5 "-‘i“‘ LA 28 2152 i)
Y (NS L 2 )
MEFLC St g2anie ot NP3

.’q"lé ::QT‘—-E( t’o:i:'!? " k—'\n—. emt g -_t'* m(al
N B b T 2 “woz 41
- R pt gme ses ki dmd 1 tomEF
B I R A?hnwi}

J O T L e L

pr-sla gl

v

[P N N

Phosgraphs axrv-xsv, Rogizewr 1 B. M. Facsimile, Placw xvi-xnit1
Plate 88
PROBLEM 66

-
’

L o 7 ¢ LoTl IRRBL BN 172
- oAm. Lo, 523tz U
ot S N R Y O ST Y TR
757 A /ﬁ/ﬂa 2 suly % %S AATT4S

T ; \—"%
MhEe
b
}‘:

T oa= mm 1 o mas B-Uher-0i2 8 AL TR i OIT
it == “or v eadal pinafd goal wabk  eiay yip tpes o 1-,Iv»=-s .
nie -4 Tk TEmlE =0 )~ 2=3l L8 ITA AR,
1 o '_.."" .ty o« 14 b eieat moipm habad e g ehcatm 8 1y
“g = - TA-TAT sl I TeN ~ S AN,
- :‘_; LTI LI S TCL I A Y T S CT R T N S PR SR,
meiin € g - ottt
T v i e0eeoiZe aTrid],
o * PR 1= ey wab diay enieiT withae
[T
T = 2l
LIRSSV S

Ploeographs vuiv-xxv, Reginer 2 B. M. Facnmils, Ploss xvi1

Fig. 1V.2rr Hieratic text and Hieroglyphic transcription of the
Rhind Mathematical Papyrus from Chace et al, The Rhind
Mathematical Papyrus, Vol. 2 (Oberlin, Ohio, 1929), Plates 87-88,



-..a.w 2R
-/.u = LAY

LV WNad ‘;-J\z- - e .!.tr;_,_&,;‘qwtz,.a.ré%_m
& ?ﬁz I e }"

R AN Ik . emveon.—-u- B EETTEIZ 4,
{3 =3 103 (et aph "":: —ai + oapaypnm oy -t 4 TR
* T -0 nm 0 &Bg? — —0 __snnnn 2f,
IF e E EldeT o saa- g
TR e 1 sy = o | —odTE20 e St J=T YELN
':; sor -s-;...,.ls.p,-,--.uur-- Yot ot =
s w 8 i:ivuduﬂm«..-:.‘!ﬁ“
oy Pres i ywh cmh gulimy gabih gt pydeaci(®
e
LTI Y

Phongraphs xxiv-xxv, Regisr 3 B. M. Focrimile, Plasee vvitaviit

Plate 9o
PROBLEM 68

ora=- ‘U-’l wu ma‘..-. .ﬂlJAM’Zﬂ”W—%%lw"-ﬂ%at

T j52 4 2" 1 .
1:-4./ U/_l._ %2 A = o P"E ,31 .c T o “9”/""’ Tl

Ol gle V- 9220 Jf,‘. Thy 4 M2 S = :u.

46 73 -1 -

ABP00s 1 T =00 | B> }oRO0er | SprciOres DQ,._,,,,.DA, 5,\,.‘“5)—.__0q....qp,-—y,al:‘heA‘
L R L O N TP R i N e g mal 3oaion . nhs . wwst i we ad Wl

TELBIN PLLBUIN FULBI 0 BELDEN gy g, “HLIeTHT 2 & =),
L R Y R IR Y T TR T T iy "m' gt te "l.-‘ - l\i:'--liw

e L S L T X N R S S =ode={l=2= g .0al
BIMsiwssne iswi tma S nebidsm o §inedeidsm . enteh & ~;-;0§- hie k’ﬁ, FTINY wt

Beboclm | 0 we WULABNI LMLLBTN B0 W Rr e = b
MO et oo ond SRk B S e 'y I bE em enid] ¢ Patheb e tmy D

OURLL Do - W 8 - T =)o TNV 4 - moo el

md b maiis s et sed g ek LR X TP SNt ¢ eateld

N o e v BEf

o« dma o -

't

A -4!—'?.-‘!2-.

% T e _4___’ 1'-5 /'lu-x . :- 3l e
THR RELp T 3:.'; i /./\ 1,‘ 4,1‘“.' 5 ? L’THT"’

2 hoeoameer AT, f,

- - o emtmh  [rlxeMboe 1 ‘J‘ o~ I‘ 2—4 ’
Toen el g0 6] IR .
DR I T R Ry 4 it

: o R l.

Phocsgrophs sxiv-xxvi, Regicter 4 B, M. Pacomile, Plasw xvir-avin

Fig. 1V.2ss Hieratic text and Hieroglyphic traascription of the
Rhind Mathematical Papyrus from Chace et al, The Rbhind
Machematical Papyrus, Vol. 2 (Oberlin, Ohio, 1929), Plates 89-90.



Plate 91
PROBLEM 69

= m.w A8, 75 DSt 17T
%}” A% A 'Zaa-a’z-
l..mahdﬁld%

"“"-31‘ Do [ F}mf

‘anm—gl ‘-3"&.2: iﬂ""

';Eé.\

men T ulTR A0,

C ORI N ) ...ip ) .- B wit wmoal b o3 UTRN i
un n/""‘dna-llw'~ e ﬁ.*svfual.._...,,.r‘p .
o8 o ob m pt-Mw Mah ol om0/ dn momi 1 fha uhe Aed
2
o ou ol A= Wi —0aThl '-Q,QJt.-’)
vt 2 et tmy ~ ol s ad Wity the hyg
o= "?.‘ ghj- o R ARe D o =171
orvisd progegi] Y o tmp ad oam pt-hie
1 1ot i e =~n’m.:/
wh fve a3 da mowit I Tl the Wl * V LERL Y S

p

“l-l-f'U\

NPy v
ll"_13;m

. & lw\-/ -
‘l—;//l

ﬁ\'
9.‘
st
el W
i
'r"a
=

‘1A

P 3 PO o @ /]
b et m R TE ot t 3 I I PR
= e/ Wbl pm WeRERPARTED
u..’a‘./-:,? T "f:‘“ :-’-u' + m.'f'. T ':4 nfn-" A I
poaen(r 90t8 b Ll i 27 eSReT B =7l
TR LA L L L (O | [T I}
1 AT 'adﬂ,]_. .

e wiy -ly - #3ti dmd
o j,
mee 4 ¢ u
Phessgraphs xxiv-xxv, Rogivter s B. M. Facrimie, Plates xvni-xvin
Plate ¢

PROBLEM 70

J-"\' AL hd 3 s 83 e
L e W Ui S

PVNEY / Zgh.. 7lﬂ ;ﬁ,
35%%l /
).143):;34_3 { A B‘ L;-uvn F/.d&t;

/1 “Wi/ x‘?Ag/

e o=l —-e- 25 ofaweed T8 00 2, B Rerd W S e ﬂ
v M oe FUohiw & ahal s¥t 34 st m welp [ BTN PR N Y y,..,

e - e
TN et 'u_.iﬂﬁl”
“"X‘ - -...n'-"-' Tah 4ty
Y B Py TN ST
e l.n.. s witr yte
T - AL RY: oy
AT IR ST -ty a 88 i prohs
Bt ART
oty e

=T

T e

amye °4'R‘ﬂ""ﬁ ;:wlo..o wn :/
1



‘P6-£6 Seid (6T6) "OINO "ull4q0) T JOA snsddey jexiewayiepy
PUIGY 4L "je 12 acey) wouy snihdeq jesnewayiepy pulyy
ay jo wondussues) siydAjBosaly pue rxay spesaty  ang Al Biq

1SAX 0wy ‘nrmueg WG 1 smBy taxxeaxk spdederryg
AKX 1oL g ‘rmpsed WG ¢ ey Axeass rydeidaeyy

. e oro 10
L@t T-ad . ~#hs

Prodet Pe: da 3 im e we
1 T 106l v !ﬁ%.

WRYY me gde ) GheGe s Pty oy meges Gvgr oo
n-"l.no.ﬁ_:_ﬂ | o+ uu'ﬂlnﬂemﬂnkx‘

TR 2em U b5 oy Ghele €5 wiey e dwmg g5 [ « tle WP e g mdey g v by teviv e e wicda
' G ' - - Ay \
.ﬁ\!ﬂb.lvlvlﬁ......ve Bl o v QAW SAWT e ﬁ?\—a%"oﬁ\onk Fo B T nsGhediPhsos
- whvy b e e gy Jlw-je 45 1 G9 §v
N e He W e ek P Ly ms e w ey w Ly L s, L S - ] - o -
. . . . e - QOO_‘,_E.‘,G =210 = #)r=3=
{ AT SR P 6 I L ad FURIEPY ) I VL Y TR ESNVIRES #-S1mps = o1e-3-

P Wi 0 B T RS I SHE L8Oz =T leg'y
=S WET - LAY, ‘ e S Ml
R B ALY EreneL R S
e EZLT VIRV T VP OVLE N Bl e meen g u T it
T eSSt VT A3 3L .



o"

PUp

4
‘

j/ TR A Lo ANZILRD

Gand, d‘/"lht /J b?—é’u'

- 1/\9—3%94\231% AL}

el @ ] o0 i 0 Qe kR0l BT 285,

nea
e

eer

o

Ty b ShE s wp aw 3 wifp W b w a wr?! no I ya
PSR N el AME N TP s =TS L,
R T N WY ST YT S S L RT T mt it
TS gl ko0 WG AT rol—tR -2 2]
ST 8 Wt m abd e steat aphymia w i3t d Koan-dd

Phocograpis xav-xxve, Regisver 3 B. M. Factimile, Plaze zvm
Plate 96
PROBLEM 74

A W--F‘"% P32 4] <1234 u’u.m ﬂz ‘#'\

ME323N L Zanl)d oyn AT
Rl N G 17 € Q—Jrﬁééﬂl"ihﬂ

TR L= T NCE BT UMEd K2 A S LAALE Ao kAT M= i

vea b ade moaiime f sft i i ahaghes 5wt Hp Aadwife [Ib4 gty e s ddme F et

the e

o e

TR NDSI0E 05 A2 AR [D e 5 e\an-rvor!

e @ 1B Q Rap the wiihwh # ps tRre Repel LW v thmin Aap-al we U gde ezt t
e _ - - e A a3 'y

Dt ¥ -8P82 ApOT NIl 28 Fon= ld K=l aifie) 2
amar uo VY 2ph yw T 0t ai]e awr tax we) Suh & pu Atane I Bas sl *® oty

Phangrephs saviexivi, Regiwer 1 B. M. Facnmile, Plases toi-xiz

Fig. IV.2vv  Hierstic text and Hieroglyphic transcription of the
Rhind Mathematical Papyrus from Chace et al, The Rhind
Mathematical Papyrus, Vol. 2 (Oberlin, Ohio, 1929). Plates 95-96.



IENT EGYPTIAN SCIENCE

‘86-L6 331eid (6761 'OMO ‘UIH290) T 'O A ‘snsddey jenewayiepy
PUIYY 241 *“ie 12 acey) wouy snihdeq jesnewayrep pulyy
3y jo uopdiiasuesy xyd£iBosaiy pue 1xa) ety maz Al Big

KIZ-11AY orvrd yremcwy W g £ wndey iaxs yfeslersyy

£o3hd

oy pop waw mw wapha miin
-ﬁ:ﬂ —u Shve] - Vldiors
ey . e g W b v Pyl w e

+ﬂ 1 P uﬂ‘w__.ﬂnnﬂdh*u U

e " LY LTS Y Y
2k v oY et = 00

shei sy iy fry 4 pmowe

WP = - -TTIRF LY
I T R T el

=i Camv=l¥I=Villam=CX

<‘. €SV g Clotrr e~
T ««_?\w.\xﬁnav
T R L S
S ENT STV EST Y v.

R

ec 2 §c 2

!

ez

‘. 1.

gy i
e

XIX-IAR Drvyg Vpeeeng gy g ¢ mmdey “iaxxeiaxx rydesdesyy

{94 w2tz g L A 4
L 2RSSR TR
e m we 1 4

* LiGe

374

tr s
-G T
myme Jee v ow -k

L . -,

<1E - ¥lil™s

te s g4 g1 e dvoace T

IR E .

Y ogrm e ot Pas w dpm geswder dp gem o ser w wbha @ yede

SIETRR A B A IRAR 2 4 £ SRR R

© APV LT
. .M.N«!ﬂ. %

. ity N‘\Aw?
’ - ' EQ
© e N UM (P B TG LU~ 3



ILLUSTRATIONS

'001-66 S1Eld '(6T6] 'OMO ‘Ulj4I0) T OA ‘sniddey jeonewayiepy
PUIYy 241 “1e 12 adey) wouy snihdeq jesnewayiepy puyy
ay) jo uondiissues) uEux_uo..o_: pue 1xa) suedalyy  xx2 Al 314

XUSRIAX 2701 o w0y gy g S sendvy ‘axx pdes Seomyg

’os

i Frogvey pacg de
e 4 Lkl
._.. wphoy Wén oy ge 3 Ghvs w v ge

Wil i 00 <001 Fo s ¢
[ L TRV SR W SN PN CRE w aca

1100 RS RTINS
Pabt pve w Gt wh e oay 21 b e

ST TRt S

. “W«&‘.«-.-\

IS IS Y

CAVGIS R (Y

ggolneizice v

I

AN Gy ] oworg Y b emBy s deseyy

v
[
b
PAY Snae eem oy Prge n Brgy Buecd deomgeh gie
' - :
- =00 BNl e WU 2 HE
P e dens avGey 4 wag g mw ophy 4 de PIY W e T .
(WP TR PTG S oW hstioraioe WI=20u nov o
W Lo T AR R UL T O e S N S oo . “rt e
T MR RS 0w BE20 0 Jagrm. oL

et A -8 33 (e A a T ¢
'V :wtd.d.m«wﬂﬂnss(ﬂ\w VRS 17 ¥ !
© TP S WY [0 Vi



IENT EGYPTIAN SCIENCE

"ZOI-101 $218]d *(6Z61 "OMMO "Ui42q0) Z 'IOA “snshdey jeopreway epy
PUY 4L e 13 a>ey) wou) snukdeq jespewayiepy puiyy
ay jo uondiussuesy siydAjBosay pue I1xar shiesaty AL AL “Big

xixawyg g W g § wmmdny Giaxx-taxe rydeSonyy tiax g pming Y 9 andy ‘arx-axx oydosdomygd

(¢ o
No e
! M ” 1
o a1 B
0 Rk
e e w v
._| 0%y o =i
.“4 Pay irhm  te-} v e, e 0 gu,
e SV e S P A S e e
v * %
'y ..pr T2
A T «..
St 1 1 20 Rt

R
%\‘
:
1



Plate 103

PROBLEM 81
rrom 4 AR uf  saSmt B 3 .
3‘ 3:31 ﬁ"l’_lf .ml’r I c-‘ mvi{ut u_q‘(gmi,\p

o
4y m .
;

'\-/7‘1‘4\ s34 43 N-r= = ""}P =il “ )

- \..‘___Aﬁ,_/'
901058 L1 =T,
souosgg a3

20 10 U

o tww bl

"o 90 =g =}
. op Fwm radbad
20 =0 o
- Teaa =
s Do -
wp Jeh 3 AW 1Y

g
[ d «

LA 13AQRLAx 3 LT myutAn g
E"-—"”“ mliiAg 1 ME&\,/A,(’ K] }2

~n1 KWt
o~ TR '3 4“'4.‘;

Va2l %3 X

o~ B ‘;"1

oFEm AR S L. - WRERRO B

B -t R et Ve 5

o - . ‘- -
! ’-‘: iy .’0 . \ ,‘:'ﬂ'n 2 'ﬁ i
2AWE-0 SN LS o
f wr 3 am L (3 1
¢ -
[ o 1:""?‘ 1] ll‘fl ?
e 29300 S 'y %e
B 7 snB=g <t
Vi e P e o [(RYH
Piengrophs xevi-zsvi, Regisrer 6 B M. Facrimile, Plate xvns-xx
Plate tog4

PROBLEMS 82 AND 828

et A e Sk Y, el

qf';",’:.""::’.“‘«.-"..%é? 84 h el T
o= . nd RAETI, pj « A . .
,; ...,.--.u‘h . A . as(e
% Lot LT 77 TR Rt ,.1:1‘4;3.3 :
oy - m cov-m=l,  KALUKS A”r .

LYY wsbh wal

% 2, 2D
LTRS¢ oSt Lot 144.1’.-.-:37 . %1. .
sk b b sw) rlem Mrdb [N ge  a t3e 1‘_‘_1 AT TV TS9N )3(D3en ¢
L I 2oty A AR N 4 y FLITRS I Iﬂ;  $ann

e AT ,

S aebaide 4 8 twd - 828
ToaeT - T SIS ér e "5’2,\{,“‘3.
viasb b} o .« TR RRD ‘..l N au -

TIAEETR 2l WA T A8

R 2ol . only o R

I head s deid tan e £ m oWl

Sabesemu 314 |,
tinkar t 4w 1 titha m M
o 0 ANORT) e
owl - n o 9=02)
iim w wab aal®

= - A -
. 3
il R a(f3ldis ],
4 s bl e o m panger m $E ank




ANCIENT EGYPTIAN SCIENCE

8
o
a

Xx oy ‘mrceg -y g £-1 saendyy iaxs-naxs spdvadenyy

.*1 - -.:.,..E Toiey ™ A
-V 130G =legsm &
re yep 0 -ty e
.“hﬂ\w > "o = Sl
pe tve w 1res 'y
.A”Eta_n.vz > -2 =u
Ar o S el
—ril) o= | B =
pup . 3 ..
NFr= - = owm I
“w esw -

SRS Y
u\l’ﬂ:
’ \“.l
it

. ntd fin
YT 4o I -

)

* 1t - .
W)y o
M o ad r o
nip {iee Py
> e gm 3 "

1E17 £ 54 201 P I -

wipme p g 3w kirs poa ol

RO STTEN SR o FiIT N PSS
.\.ﬂw [VE-%ad
s

<17
™

‘IQP

NV

<xi} <%
~ 3 [%d
% L a
L] 6-
»3¥jey n

GAPREEST 316 o1l s P
¥8 WATH0¥d

So1 g

xxaie wenyg qpewey WY S randvg unxx plesdinyd

drvy L . pup
T w -1
-y ~r »
Sié H ‘)
(R »oe .
R
=& ri= 4
L2 g v
e X
Neabisple,,  Sa SFTLE
do'lon B T 88 5 L 00
e L e U T P
e [ 3] '
Ll e i
l:. N wem 4w
e g wi~Jullep
li-mit,, =2
2
$rsc. 7! $rz ¢ >

¢« LT ORI ] .
CATTE T LT el
CETESNRLT L,

tg wa1g0ud



ILLUSTRATIONS

—
g_
N

Fig. IV.3 Hicratic signs for the Horus-cye fractions of a heqat.  Taken from
Gardiner, Egyptian Grammar, 31d cdit., p. 197-

\

Fig. IV.4a Diagram for the Guan and Peet interpretation of the term meryt
(BD in this figure) as “quay * Taken from Guan and Peet, “Four Geometrical
Problems from the Moscow Mathematical Papyrus,”™ p. 173,
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10 khet
13
khet
L
khet 10 khet
10 khet
L
khet
10 khet
Fig. IV.4b Three possible interpretations of the tri lar arca caiculated in

Problem 3§ of the Rhind papyrus. The uppermost is a right triangle with the
meryt (10 khet) as the aititude. The middic figure is an isosceies triangle in
which the meryt is once more the aftitude. The bottom is aiso an isosceies
rriangie but with the meryi as one of the equai sides.
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Fig. iV Ac A possible graphic solution of the area of a scalene
triangle. marked with the numbers for the base (4} and the height
(103 given tn Prablems 7 and 7 in Document IV 2
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Fig. IV.5a Text and Figure for Problem 53 of the Rhind
Mathematical Papyrus with the figure recopied and its hieratic
numerals replaced by modern numerals.
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Fig. IV.5Sb A three-tiered figure reflecting the numbers given on
the triangle appearing in the text in Fig.IV.5a. It thus is composed
ofar gle. a tr d.and a trl !

P
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Fig. IV.5¢ Figure for Chace's Interpretation of Problem 53 In his
translation of the Rhind Papyrus, op. cit., Vol. I, p. 94.
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Line L b. d. Units Volume Enlistees Detail

GS 3 2 2 1 12 15

G6,H32 8 [ 3 10 1 Eastern Chapel.
Gl4 8 3 5 1 8 232

G1s 6 4 2 1 48 42373

Gls 4 2 2 1 16 1270

GI17,H33 4 4 2 2 64 6 4 10 20 Footings.
GI18,H34 3 3 2 2 3% 3310 Footings.

H3l 15 s F O 1823% Great Chamber.
H? 33 12 2 2 4248

HS8 22 12 2 1 1248

HS 42 12 1 2 13 2

HII 3 lp 1 11 3 lp

H 17 4 le3pl ¢4 22¢ 6p

H2S 12 2% 1 2 2%

H26 22 %23 1 2 323

H2? 32 12 122 1523

H 30 12 s 31 15 Great Chamber.
12 12 s 301 30 Great Chamber.
13 15 s 3 1 372 August Chamber.
14 8 5 2 1 20 Eastern Chapel.
15 8 1§31 132

16 32 4 i 1 32 Western.
17,G10 52 3 31 39 Eastern.

18 24 S5 2 1 B4

19 26 2 Sp 1 Iile 3p Carrying srit.
110 20 5 S5p 1 7lc 3p Carrying srft.
112 27 3 2 1 378 Loosening brick clay
113 8 7 2 1 112 Water from a field.
114 12 12 2 2 9 For tower.

1S 22 12 122 113 For tower.

120 8 6 11 48

Fig. IV.I9 Correct calculations of volumes by the scribe of Relsner
Papyrus I. Taken from Gillings. Mathematics in the Time of the
Pharaohs, Table 22,2, p. 221,
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Line L b d Units Volume Enlistees Detail

Gs 33 1 2 1 192 2 19 260r 19 4

H3S 8 Shr9 ¥ 1 18

116 3222 12 2 25 $6or26 4 For the tower.
117 ¢ 22 12 2 36 for 30 For the tower,
118 10 S2 Jforl | 55 Brick clay.

B. Errors, Misreadings, or Approximations.

Line L b d  Unis Volume Enlsteas

G71 3 21 &+ 1 2%60r1 248 5 Wcorrecifor? L.
G9 13 n 12 1 214 2 21 2for21 3 3.
G0 N2 3 I » 4for 3(2 3 T3).
Gl n 4 2 1 85 for 64 8 ¥ correct for 85.
c12 32 2 f 43 2 for (3 TO 30).
Gi1s 102 82 } 1 276:202 3 2 3 Scorrectfor 27.
H20 33 1cdp 1 1 Sc ¢ for 4c 6p (3 ZB)p.
C. Minor Errors.

Line L b d Units Volume

H10 4 1p 12 2
HI13 2% 2% 3

1 (3¢ 20) for (3¢ 3f).

1 (3c 6p 1 30 for (3¢ 6p 2)(I3 320).
Hi4 222 12 1c1pif 1 (3¢ 4p 1 M) for (3¢ 4p 2012 TEN).
HIS 1c% 12 % 2 (3¢ 5p)for (3¢ 4p 20)(2 3 14 T8,
HIB 32 lc2p 6p 1 (3¢ 3p 2 30 for (3c 4p 1 30)T30).
HZ2 13 1e3p 1 1 (2c 2p 2f) for (2¢ 2p 2 31).

H24 3% Ic2p 6p 1 (4c 20) for (4c 2 Y5 15) approx.
H2 4c4p Ic% 1c2p 2 (20c 1p | 21) for (20c 1p I approm.

D. Major Errors.

Line L b d Units  Volume

H16 2c 3p lc4p Sp2f 1 (2¢ 5p 2 2)for (2¢ 6p 3 If) approx.
HI19 3 %2 1c3p 1 1 (4 2p 3)for (S¢ 2p 3 31)(? 26).
H2l 1c% 1c3p 1 1 (2c 4p 1...0)for (2¢ 3p 1 14f).
H23 4 le 6p 6p 1 (4c 1) for (6c 2p 2 3)28.

E. Possible Restorations.

Line L b & Unis Volume Restoration

H2 2% 6p [] 2 4«13 d = 6p If (probably 100 great).
H3 23 6 []1 le 2p2...0 d=2Y(givesv = lc2p 2?2 Tif).
H4 23 6p [1[) 1...2p2...1d = 5p(units = |,as above).
H5 234 6p []1 le3p 12 da= 5p 2 (probably 100 greal)
H6 43 []1(]2 6213 b= 6p

Fig. 1IV.20  Calculations with errors by the scribe of Reisner
Papyrus I. Taken from Gillings. op. cit. Table 22.3. pp. 222-23.
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4 fingers = | palm

7 pelos = 1 cubit

1p - 7 c
2p - 1B c
3p - 1 1 3B c
4p - 2 7 c
Sp - 2 7 1% c
6p - 2 3§ B .

Fig. IV2L. Table of fingers. palms. and cubits, Taken from
Gillings. op. cit. Table 22.5. p. 225.

fength breadth  depth  units  volume

3c¢3p 1c2p 6p 1 4c2f
Then,
c p c p
5
Ni 5
2 6 10
Totals 1 2 5 3.
5 3
AN 6 24 30 18
Totals 6 4 0 4 4,

IFig. IV.22 An Egyptian technique for calculating the volume in
Section 1L line 25 of the Reistier Papyrus | suggested by Gillings,
op. cit. p. 227.
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)

* R 3
b, N
=L AU

Fig. IV.26 Fragment of a ceremonial cubit-rod in the Metropolitan
Museum of Art. N.Y., made from chert. End view and
orthographic projection. Lengih of fragment 1 13716 in.  Taken
from W.C. Hayes, The Scepter of Egypt. Part 1l (Greenwich.
Conn.. 1959, Fig. 263, p. 413.
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ANCIENT EGYPTIAN SCIENCE

Fig. IV.27d Enlargements of one of the heads and the friczc of the
Cubit-rod pictured in Figs. 1V.27b and 1V.27c. Taken from
Schiaparelli, ibid., Fig. 154.

Fig. IV.27¢ A working, hinged cubit rod of Acacia wood, also from
the tomb of Cha. ‘FTaken from Schiaparelli, ibid., Fig. 47.
448
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Fig. IV.28 The “Table of Two™ from the Rhind Mathematical
Papyrus as tabulated by F. Peet. The Rhind Mathematical Papyrus

(London, 1923), p. 37.
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recto, page 1, colonne 1.

]

w3 au nombre 4000 <oy P] =69 de 100
de  unlessymun wily £ PATY de 100
de 2 Iy wh T 2 de 300
de 3 2 wlv Y] IEGY de 400
de 4 2 v @] TAlY de 500
de s 3w wy X] Y de 600
de 6 4 oy ¥] Y389 de 700
de 7 4 us TGy @ @ATY de 800
de 8 S us w N X de 900
de 9 6 v A X269 de 1000
de 10 6w <év B ATAlY de 2000
de 20 13 Wy I B de 3000
de 30 20 v A BX26Y de 4000
de 26 4 wov E TTATY de soco
de 50 33w W & A de 6000
de 6o 40 wv I AXIGY de 7000
de 70 46 <gr H ETATY de 8000
de & 53w wv 8 § de 9000
dﬂ -

90 6o v 1 ,G'x.‘-:?'olde 10000

Fig.- IV.30 The Greck text and transcription of a table of 2/3 of
the whole numbers: units 1-10, tens 20-100, hundreds 2001000,
thousands 2000-10000, given in the first part of the Papyrus of
Akhmin, dating from about the 7th or 8th cent. A.D. Taken from
J. Baiilet, Le Papyrus maihtmaiique d'Akhmin (Paris, 1892), p. 24.
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266 3
333w
400
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533w
600
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3333 ws
4000
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TABRLE 4.3

Two-thirds of unit fractions,
5 of 2 = I T2 = 3
3 3 § T8
3 3 B 24 [
3 5 ™ %
5 4 2 % 3
3 7 ¢ a2
3 B % ® Zz
3 § B 5%
kf b 0 & 5
3 I 2 &%
3 2 % 72 18.
TABLE 4.4
One-third of unit fractions.
3 of 2 = B 2% = B
3 3 2 36 §
3 3 % @ 7
3 5 0 & [
3 [ % 72 8
3 7 B & b1}
3 B 2 % 2%
3 5 3 108 27
3 10 % T 30
3 i % 132 33
3 2 8 1= 36
TABLE 4.5
One-half of unit fractions.
2 of I = 3
2 3 [
2 i 8
2 L4 i)
2 8 iV
2 7 T4
2 8 %
2 § B
2 10 20
2 m b=
2 Z 2%

Fig. IV.3l Tables of two-thirds, one-thicrd, and onc-half of unit
fractions as reconstructed in the Egyptian manner by R.J. Gillings,
Maihematics in the Time of the Pharaohs (Cambridge, Mass., 1972),
p. 31. Note that Gillings has used the reciprocal form to write the

unit fractions. 452
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Fig. IV.32 A computation on an ostracon (no. 153) written in
hieratic characters and transcribed into hieroglyphic signs. Found
under the Tomb of Senmut (No. 7). Dynasty 18. The hieratic text
is taken from Plate XXIX and the hieroglyphic transcription from
its facing page in W.C. Hayes, Ostraks and Name Stones from the
Tomb of Sen-Mut (No. 71) at Thebes. The Metropolitan Museum
of Art, Egyptian Expedition Publications, Volume XV (New York,
1942).
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Der Text lautet wie folgt:

L0
=T 27RO O
Pytent S Sealauicl o 390 62
JENBET=204 o 20 1
o = == 40 8
ﬁk..&m d==o A D
2% o 340 28
= == M0 28
Ln © 70 35
‘P‘&n 'V mm '!'; I th+'h
N 115} Lo o 16y 8,
SNEWRINTSL L 3 e s 2
2]2e 1 6 e 10 5
ST N Lol e 2uet 1
BB TTL L ¢ o e 3
PPOfIRNTT L L 2 e 3 1%
FHog ol L o2 e 3 A
SizgINSoL 2 2 e w0 5
T8RSl 2 2 e e 3,
MRS Lot e 1 ey
4 o 4 h e 2L+ 1Y,
Fo—doaNT2e 2 o e th wsw
SN mn L o'h e ha'u Vit

W = PRy 70 35

Fig. 1V.33 The hieroglyphic text of a list of Salary Portions for
temple personnel at the Temple of Niahun in 1the Middle Kingdom.
Taken from L. Borchardl, “Besoldungsverhilinisse von Priestern im
mittleren Reich.” ZAS, Vol 40 (1902 03), p. 4.
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«Berechinung der zu dicsem Tem. Brote Bier

pel gebrachten Einkinfte« Stidck S¢s-Kriige Hpnw-Krige
sListe der tiglichen Einkiinfte« 390 62 172
»Vom Tempel des Sobk von Kro-

kodllopolis wurde gebrachts . 20 1 —
«Zusammene . . ... .... . 410 63 172
sAufstellung(?), nachdem davon

geopfert worden«
s Ausgegeben an die Tot.enprle

atere . ... ..., . , 340 28 56'/,
oZusammens . . ., . ... ,, 340 28 56/,
+Reste .. ..... Ca e 70 35 115,
« Aufatellung (P Verullung?) die-

ses Restese Teile(® : 1%, YA 2h+'%
+Erster und Tempelvorstehers. 1 10 : 18Y, 8Y, 271

.v watal der ' ] p 1. ry 1
teilung, der in diesem Monat

Dienst bate ......... 1 3 : § 2'), 8L+
sHauptvorlesepriestere . . .., 1 6 ; 10 5 18+ "
»Tempelschreiber, der In diesem

Monat Dienst hate ., ... 1 1 2+, |UA ¥h+'a

sGewdhnlicher Vorlesepriester,
der in diesem Monat Dienst

hate @ . . ... .. e 1 4 : 6 3 11,
»Wiw-Priester, der In dieum

Monat Dienst hat« . . . ... 1 2 : 3, 1%, 5%+
sIinl-ist-¢;-Priester, der In die-

sem Monat Dienst hat . . .. 1 2 : 3V, 1%, 5%+ "
»I63-Priester, der in diesem Mo-

nat Dienst hate . . . . ... 3 2 :10 5 16, 4+ Y,
*Koniglicher Priester, der in

diesem Monat Dienst bate . . 2 2 : &Y, 3 1Y
Moo , . . . .. e e | S A A s 2’h 4w
»Thitrhitere . . , .. .. ... 4 i 2%+ 1'% 3h+'e
*Tharhfiter, der nachte Dienat

hate ... ... e . 2 Y 1Y Vot h+'h+ e
*Tempelarbeiters . . . . . ... 1 e f 4+l Yo+ Yt it e
*Zosammene . .. .o..4 ... 70 35 115,

Fig. 1IV34 A German translation of Fig. 1V.33 made by
Borchardt, ibid.. p. 1S.
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Fig. 1V.35a Suggested graphic solution of a scalene triangle.
Taken from T.E. Peet, "Mathematics in Ancient Fgypt.” p. 432,
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Fig. 1V.35b Suggested graphic solution of a truncated triangle, l.e
a trapezoid. Taken from Peet, 7bid,, p. 433,

Fig. IV.36 The octagon of Problem 48 of Document I V.I, redrawn
as a symmetrical octagon inscribed in a square by K. Vogel,
Vorgriechische Mathematik, Teil 1. p. 66.

456



ILLUSTRATIONS

- —p
]

g ey g—

38

Fig. IV.37 Three figures lllusirating Gillings' suggested graphic
solution of the Egyptian formula for the area of a circle. Taken
from Gillings, Mathematics in the Time of the Pharaohs. p. 144,
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Text Smows Przr
Beispiel sur Berechnung einer nbs | Korb = Halbkugel Korb = Halbaytinder
Wenn man Dir sagt: cine nds
- (p-r von Mindung (d) [m4§]mlﬂnﬂm¢(‘)
Tz md r 47 in Erhaltung m 43 e 'd (o)
1a8 ‘mich wissen ihre Fliche
Nimm § von 9
weil die nb,1 duunnedm‘“ ist | 4[wr] = Kugel oY)
das macht ¢
9—t=8 2d—324
§.8=34+6+18 ' ] =
s_(,+6+i§)_7+§ (3‘—;3‘)—%(2‘—%2‘)-(—; 2‘~—‘-2‘
(74 3) (4 + 3) = 32= Flache Fadfl )= 50 fw 2 [Famef ) =30 ) waT

Fig. IV.38 Comparlison of the Interpretations of Problem 10 of the
Moscow Mathematical Papyrus by Struve and Peet. Glven by
Neugebauer, Vorgriechische Mathematik, p. 130,

Fig. IV.39 An illustration of Egyptian dome-like granaries used in
Neugebauer's suggested interpretation of Problem 10 of the
Moscow Mathematical Papyrus, ibid., p. 136.
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Nous avons bien pour l'aire de 'octogone ainsi construit :
91.(3z+2,4)n81-(9+8)-8|-l7-64.

Connaissant les mesures des sires des triangles rectangles, le scribe pouvait
ainsi calculer 1a mesure de l'aire de l'octogone. Micux, méme, compte tenu de la syméuie
de 1a figure il pouvait “paver” foctogone selon le schéma suivant :

B ¢ Q

111NN
o0

S s%/?. —

Autrement dit, "géoméiquement”, I'aire de l'octogone ABCDEFGH est
égale i 'aire du carré PQRS. Certes il ne s'agit que d'une reconstruction, mais d'une
reconstruction tout A fait plausible compte tenu des connaissances des anciens Egyptiens.
Mais le probleme ne réside pas essentiellement dans I'existence d'une telle reconstiution ;
il se situe au contraire dans la considération de I'octogone ABCDEFGH. Ce sera
principalement I'objet de notre conclusion.

Fig. IV.A4A0 The figure in the Rhind Papyrus for Problem 48 and
its redrawing as suggesied by M. Guillemot, ‘A propos de la
‘géométric Egyptienne des figures’,” p. 139, Included is his
computation of the area of the octagon as 64, Le., as equal fo a
square of side 8, which the Egyptians d as approximately
equivalent to a circle of diameter 9. The reference to square PQRS
in the bottom paragraph is to the square of side 8 in the bottom

right figure.
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Arithmétiquement, dans le cadre égyptien des quantidmes, nous avons 3
rechercher I'ensier naturel n tel que g— soit le plus voisin possible(l - !ﬂ . Or nous

avons

a 1 L 1
a=oms (1. i)’ =076s (1-5f =0m0 (1-55) =081
Nous constatons que 9 est I'entier qui convient le micux et c'est précisément
celui choisi par les anciens Egyptiens. Nous pouvons noter que :

(8- s = 0rms300<J = o2ms398 < 5 - 75} = 0185002

Autrement dit, 'amélioration de l‘appmximlion est plus délicate 3 metire en
ocuvre surtout si nous tenons compte des conditions qui président 3 cemains calculs. [1
n'en demeure %:s moins que I'approximation choisie par les anciens Egyptiens est la
meilleure dans le cadre d'un seul quantitme.

Nous savons que la division ou la multiplication par deux éuait la méthode
opératoire préférée des anciens Egyptiens. Dans ce cadre il edt &é plus facile de choisir

£| . ‘f 2 laplace def1 - lg)z Nous pouvons donc considérer que I'approximation a

té conduite avec un soin certain, Néanmoins lintroduction du neuvidme n'offre pas de
difficulté insurmontable compte tenu des relations suivantes :

2pajD+3D.  {D=}D+g;D

§D=75D+5gD

In 1.1 1.1 11 111
D-;D-(i-i- I'E'HE + E)D-(Ti + E)D-(i-i- g+ l—s-)])

- G+ b+ T‘;)D. (voir R42),

Mais cette excellente approximation arithmétique nous pousse A rejeter une
heuristique "géométrique”, Autrement dit, "I'exemple” 48 doit &tre considéré comme étant
une “explication géométrique” de la formule mise en ocuvre. La figure et les calculs
afférents jouent le méme réle que les signes des écritures égyptiennes. Ce n'est sans
doute pas un hasard si cenains problémes sont réduits 3 cene seule présentation ou si
celle-ci constitue la deuxidme partie de R51. Les commentaires ne servent alors qud
dévoiler les explications plus ou moins secrétes qui sont absentes d'un tel schéma. Soit

incapacité, soit par un souci de sauvegarde, le scribe n'a pas voulu tout nous dire
r:squ'il a &crit le “probléme” R48. Mais ce dernier représente un moment i t dans
I'histoire de la pensée mathématique : celui d'un essai de “justification trique” d'un
résultat obtenu empiriquement.

Fig. IV.4i M. Guiliemot's remarks on the computation of the
quadrature rule for the area of 3 circle, as given in his article
quoted in the legend of Fig. 1V 40, p. 140. R.42. R.48. R.5i, and
R.52 refer to the numbered probiems of the Rhind Papyrus.
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Fig.V.42 An ellipse and an approximately equal rectangle
scratched on a wall in the Temple of Luxor. with Burchardt’s
interpretative drawing below. Taken from L. Borchardt,
"Altagyptische Werkzeichnung,” ZAS, Vol. 34 (1896), PIl. VI, Fig.
7.
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Fig. 1V.43 A portable Sketch of an arc on limestone from Dynasty
3 at Saqqara, showing the use of ordinates of specified lengths in
cubits, palms, and fingers to guide the form of the arc. The
ordinates are placed | cubit apart and marked as follows: 3 cub. + 3
palms + 2 fing. lequaling 98 fing.l. 3 cub. * 2 palms * 3 fing.
[equaling 95 fing.l. 3 cub. [equaling 84 fing.). 2 cub. + 3 palms
[equaling 68 fing.l. and I cub. + 3 palms ¢ ! fing. lequaling 41 fing.l.
The figure below is the suggested completion of the arc and its
ordinates, with the lengths translated into modern numerals and
with the measures converted into fingers on the basis of the royal
cubit equal to 28 fingers and the palm to 4 flngers. Both figures
are taken from G. Wolff. "Agyptische Mathematik in Kunst und
Handwerk,” pp. 266-67. 462



